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Introduction: Stochastic processes in
statistical physics

In these notes, we give a brief introduction to statistical physics from the point of view of stochastic
processes. There are questions that equilibrium statistical physics cannot address, for instance, what is
the correlation between an observable measured at time t and the same observable measured at time
t+τ? To answer this question, it is not enough to provide the energy of each configuration of the system,
one should also define the dynamics of the system, that is, how the system evolves from one configuration
to another; this is different from quantum systems, the dynamics of which is given by the Hamiltonian.
Since the system can explore states that are not minimum energy ones, this dynamics should contain a
random component: it should be stochastic. This dynamics should also be compatible with equilibrium:
the probability distribution should converge, at long time, towards the Boltzmann distribution. We will
see that providing the system with a dynamics also allows to give a precise meaning to concepts as
ergodicity or even. . . equilibrium.

Defining systems with their dynamics also allows one to study systems that are out of equilibrium.
One can identify several classes of non-equilibrium systems. The first consists of systems that evolve too
slowly to reach equilibrium in a reasonable time; such slow dynamics can be found in disordered systems,
such as glasses, or systems evolving close to a critical point. The second class is composed of driven
systems, for instance systems submitted to a temperature or a density gradient, or systems submitted to
a time varying control parameter, such as thermal engines. The third class is made of systems which are
driven at the local scale, such as crowds of sheeps or flocks of birds, or tissues; these systems are called
active.

In Chap. 1, we define discrete processes, that is, processes that evolve on a finite set of states. We
define both the random dynamics on the set of states and the corresponding dynamics for the probability
distribution. We determine the properties that these dynamics need to satisfy for the system to be at
equilibrium. In Chap. 2, we define processes in continuous space, such as the Langevin equation, and the
corresponding deterministic partial differential equation for the probability distribution. In Chap. 3, we
focus on simple driven systems: we show how their fluctuations are related to their response to a force
and then introduce stochastic thermodynamics, that define the quantities and laws of thermodynamics
to stochastic processes. In Chap. 4, we define the stochastic dynamics of fields, determine when they are
compatible with equilibrium, and treat questions specific to fields.
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Chapter 1

Discrete processes

1.1 Random walk

1.1.1 Stochastic process
We introduce the simplest model that we can think of to model, for instance, the dynamics of a speck of
dust in the air. At time t = 0, the particle is located at the origin: x0 = 0. The particle moves at discrete
times on a lattice: its position at time t ∈ N is given by xt ∈ Z. At each time, the particle makes a unit
jump to the “left” or to the “right”:

xt+1 = xt + st, (1.1)

where st = −1 with probability 1/2 and st = 1 with probability 1/2. The jumps are independent.
We can write

xt =

t−1∑
t′=0

st′ , (1.2)

which allows to compute the average and the variance of the random variable xt:

⟨xt⟩ =
t−1∑
t′=0

⟨st′⟩ = 0, (1.3)

〈
x2
t

〉
=

〈(
t−1∑
t′=0

st′

)2〉
=

t−1∑
t′,t′′=0

⟨st′st′′⟩ =
t−1∑

t′,t′′=0

δt′,t′′ = t. (1.4)

We have used that ⟨s2t ⟩ = 1 and ⟨st′st′′⟩ = 0 if t′ ̸= t′′.

1.1.2 Probability density
Exact solution, convergence

We now consider the probability px,t for the particle to be at position x at time t; it is given by the
binomial coefficient

px,t =

 2−t

(
t

x+t
2

)
if x+ t is even,

0 if x+ t is odd.
(1.5)

The condition comes from the fact that the particle cannot be at en even position after an odd number
of jumps and vice-versa.

From the central limit theorem, the normalized position yt = xt/
√
t converges in law towards the

normalized centered normal law: its density satisfies

fyt
(u) −→

t→∞

1√
2π

e−u2/2. (1.6)

This is often written under the non-rigorous form

px,t ≈
t→∞

1√
2πt

e−x2/(2t). (1.7)

7



8 CHAPTER 1. DISCRETE PROCESSES

Evolution

We will actually be more interested in the evolution of the probability density. To be at x at time t+ 1,
the particle should have been at x−1 or at x+1 at time t, and the jump to x has a probability 1/2, thus

px,t+1 =
1

2
(px−1,t + px+1,t) . (1.8)

This is the first and simplest evolution equation that we will see. We first make simple comments on
this equation, which hold in the general case. We can rewrite the evolution equation for the difference
between the density at time t+ 1 and the density at time t:

px,t+1 − px,t =
1

2
px−1,t − px,t +

1

2
px+1,t =

∑
y∈Z

Mxypy,t. (1.9)

This equation is the master equation of the problem; it is a linear equation for the density px,t. In our
case, the “matrix” M is given by

Mxy =
1

2
δx−1,y − δx,y +

1

2
δx+1,y. (1.10)

The probability is conserved:
∑

x px,t = 1 at all times; this implies∑
x

Mxy = 0. (1.11)

With this matrix formulation, we can write the probability density at any times as

px,t =
∑
y

(1+M)txypy,0, (1.12)

where 1 is the identity matrix.

Stationary solution

The condition for p∗x to be a stationary density is

(Mp∗)x =
∑
y

Mxyp
∗
y = 0. (1.13)

Here, it leads to p∗x = a ∈ R, which cannot be normalized: this stochastic process admits a stationary
measure, but not a stationary density.

We note that the conservation of the probability (1.11) can be written as MTU = 0, where U is a
vector with all its components equal to one. This means that 0 is an eigenvalue of MT ; thus it is also an
eigenvalue of M , which always admits a stationary measure.

1.2 Continuous time random walks

1.2.1 Examples
Random walk on Z

We will see that it is easier to work with continuous time processes, where the master equation (1.9)
becomes a differential equation.

We consider again the random walk on Z but, here, during a time interval δt, the particle can jump
to the left or to the right with a probability δt/2 in each direction. The master equation then reads

px(t+ δt) = (1− δt)px(t) +
δt

2
px−1(t) +

δt

2
px+1(t), (1.14)

from which we can write the master equation

ṗx(t+ δt) =
1

2
px−1(t)− px(t) +

1

2
px+1(t) (1.15)

=
∑
y

Mxypy(t), (1.16)



1.2. CONTINUOUS TIME RANDOM WALKS 9

where the matrix M is still given by Eq. (1.10).
Considering the density as a vector, we can write

p(t) = etMp(0). (1.17)

Random walk on a circle

We consider now a model that admits a stationary density. For that purpose, we consider N sites placed
on a circle, meaning that the site N is identified with the site 0; this can be seen as a random walk on
Z/NZ.

For N = 6, the matrix M reads

M =


−1 1/2 0 0 0 1/2
1/2 −1 1/2 0 0 0
0 1/2 −1 1/2 0 0
0 0 1/2 −1 1/2 0
0 0 0 1/2 −1 1/2
1/2 0 0 0 1/2 −1

 . (1.18)

We can check that the sum of the coefficients over each column is zero.
It is easy to verify that the uniform distribution px = 1/N is a stationary solution of the master

equation. The uniform distribution corresponds to the equilibrium Boltzmann distribution when the
energy is the same on all sites.

Oriented random walk on a circle

We introduce a model that is close to the previous one but that will be useful to discuss the concept of
equilibrium. The particle moves on the same circle with N sites, but now it can jump to the right only,
with a probability δt in a time δt. For N = 6, the matrix M now reads

M =


−1 0 0 0 0 1
1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1

 . (1.19)

The uniform distribution is still a stationary distribution but, as we shall see, its status is not the same
as before.

1.2.2 Probability current, stationary and equilibrium states
We here consider the general case where a system can take a state i ∈ {1, . . . , N}. During a time δt, the
system can jump from the state i to the state j with probability kjiδt, where kji is the transition rate.
The master equation still takes the form (1.16), with

Mij = kij . (1.20)

To satisfy the probability conservation, we set

kii = −
∑
j ̸=i

kji. (1.21)

For a given probability distribution pi, we define the probability current between the sites i and j as

jji = kjipi − kijpj . (1.22)

We can rewrite the master equation with the currents:

ṗi =
∑
j

kijpj =
∑
j ̸=i

kijpj + kiipi (1.23)

=
∑
j ̸=i

kijpj −
∑
j ̸=i

kjipi (1.24)

=
∑
j ̸=i

jij . (1.25)
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The right hand side can be seen as a discrete divergence.
In particular, for the stationary distribution,

∑
j ̸=i jij = 0: the total probability current towards the

state i vanishes. We now compute the probability current for the stationary distribution, pi = 1/N , for
the symmetric and oriented random walks on the circle. For the symmetric random walk, we find that
all the currents vanish. On the contrary, for the oriented random walk, we find that ji+1,i = 1/N . We
thus see that the nature of the stationary state depends on the process.

We say that the system is at equilibrium if it is in a stationary state and the currents vanish. A
stationary state with finite currents is a non-equilibrium stationary state, sometimes abbreviated NESS.

1.2.3 Random walk in an energy landscape, detailed balance
Until now, we have only considered dynamics where the stationary state is uniform. We now attribute
an energy Ei to each state i and determine the necessary conditions for (i) the system to admit an equi-
librium stationary distribution and (ii) this distribution to match the equilibrium canonical Boltzmann
distribution at temperature T :

peqi =
1

Z
exp

(
−Ei

T

)
, (1.26)

where the Boltzmann constant has been set to one and Z =
∑

i exp(−Ei/T ).
Looking for equilibrium distributions is easier than looking for stationary ones, because the condition

is stronger, and local, in the first case. A distribution p∗i is an equilibrium distribution if

jij = kijp
∗
j − kjip

∗
i = 0, (1.27)

for all pairs (i, j). Inserting the Boltzmann distribution (1.26) in the vanishing current condition (1.27),
we obtain:

kije
−Ej/T = kjie

−Ei/T . (1.28)

This is the detailed balance condition. It is a necessary and sufficient condition for the system to admit
the Boltzmann distribution as an equilibrium distribution.

There are an infinity of choices that satisfy the detailed balance condition. In order to define such a
dynamics, we usually first define the graph of states gij : gij = 1 if the system can jump directly from
state i to state j and gij = 0 otherwise. Then usual choices are

• The Glauber dynamics:
kij = gije

−Ei/T . (1.29)

• The Metropolis dynamics:

kij =

{
gij if Ei ≤ Ej

gije
(Ej−Ei)/T if Ei > Ej

. (1.30)

These dynamics are usually used to

• Search the minimum of a function without being trapped in local minima, which is used in simulated
annealing, where the temperature is slowly reduced.

• Sample a complex phase space to compute averages; this is notably used for the Ising model.

1.2.4 Convergence towards the stationary distribution, ergodicity
As noted for the random walks, a master equation always admit a stationary distribution p∗. We can
wonder if, starting from a distribution p0, the master equation will drive the system towards the stationary
distribution.

To answer this question, we first need to define a distance between a distribution p and the stationary
distribution p∗. We use the relative entropy, or Kullback-Leibler divergence, defined by

D(p, p′) =
∑
i

pi ln

(
pi
p′i

)
. (1.31)

Clearly, D(p, p) = 0 and, since ln(x) ≤ x− 1,

D(p, p′) = −
∑
i

pi ln

(
p′i
pi

)
≥ −

∑
i

pi

(
p′i
pi

− 1

)
= 0. (1.32)
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Although the relative entropy quantifies a “distance” between two distributions, it is not a metric since
it is not symmetric.

We now compute the evolution of the relative entropy with respect to the stationary solution:

d

dt
D(p(t), p∗) =

∑
i

ṗi ln

(
pi
p∗i

)
(1.33)

=
∑
i,j

Mijpj ln

(
pip

∗
j

p∗i pj

)
(1.34)

≤
∑
i,j

Mijpj
pip

∗
j

p∗i pj
(1.35)

= 0. (1.36)

We have used twice the normalization condition
∑

i ṗi = 0 or
∑

i Mij = 0 and the inequality ln(x) ≤ x−1.
We have thus showed that the relative entropy is a Lyapunov function of the master equation. The

equality is reached when, for any pair of states ⟨ij⟩, either pip
∗
j = p∗i pj or Mij = 0. The first case means

that the distribution over the pair ⟨ij⟩ is proportional to the stationary distribution. As a consequence,
if the dynamics is ergodic, meaning that there is a path with nonzero transition rates linking any pair of
states, then the distribution converges towards the stationary distribution.

If the dynamics is not ergodic, the dimension of the space of stationary distributions is given by the
number of connected components of states, and the distribution converges to a stationary distribution
on each connected component.

1.2.5 Free energy
The result of the previous section does not require the transition rates to satisfy detailed balance. If they
do, the stationary solution is the equilibrium distribution peq (Eq. (1.26)):

peqi = exp

(
F eq − Ei

T

)
, (1.37)

where F eq = −T ln(Z), with Z =
∑

i exp(−Ei/T ). The relative entropy between a distribution p and
the equilibrium distribution reads

D(p, peq) =
∑
i

pi ln

(
pi
peqi

)
(1.38)

=
∑
i

[
pi ln(pi) + pi

(
Ei − F eq

T

)]
(1.39)

=
F − F eq

T
, (1.40)

where we have introduced the free energy, the average energy, and the entropy of the distribution p:

F = U − TS, (1.41)

U =
∑
i

piEi, (1.42)

S = −
∑
i

pi ln(pi). (1.43)

The Lyapunov function of a dynamics that satisfies detailed balance is thus the free energy. The
distribution converges towards the equilibrium distribution and the free energy decays towards the free
energy of the equilibrium distribution, which is the distribution with the lowest free energy.
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Chapter 2

Continuous processes

2.1 Langevin and Fokker-Planck equations
The construction of the Langevin equation from physical ground, and of the Fokker-Planck equation from
the Langevin equation is a standard topic of advanced statistical mechanics. We follow more or less the
presentation of Ref. [1] chap. 10, or Ref. [2] chap. 9, with some ideas borrowed from Refs. [3, 4].

2.1.1 Particle in an external potential
Let us consider a particle of mass m in an external potential U(r), and in contact with a thermal bath
at temperature T . A typical example of potential is the harmonic trap, U(r) = 1

2κr
2. Let us denote r

and v = dr
dt the position and velocity of the particle. At equilibrium, the joint probability density of v

and r is given by the Boltzmann distribution

Peq(v, r) ∝ e
− 1

kBT

(
mv2

2 +U(r)
)
, (2.1)

where kB is the Boltzmann constant, and the proportionality coefficient is the partition function. We are
usually interested in the statistics of the position only:

peq(r) =

∫
dvPeq(v, r) ∝ e

− U(r)
kBT . (2.2)

The canonical ensemble framework gives us the equilibrium statistics, but not information of the
dynamics. What does a typical trajectory r(t) of the particle look like? What are the expressions of
the time correlations ⟨r(t1)r(t2)⟩? To obtain such information, we need to specify a dynamical model.
In doing so, we should be careful to recover Eqs. (2.1)-(2.2) for the (large time) equilibrium probability
distribution. As we have seen in the previous section for the Ising model, the dynamical model leading
to a given statistics is not unique. We therefore need a physically motivated dynamical description.

2.1.2 Langevin equation
We assume that our particle is immersed in a fluid medium, and that it is much larger than the fluid
molecules. The fluid has two effects on the particle.

• It induces a friction force proportional to the velocity: Ffriction = −λv.

• The collisions between the fluid molecules and the particle give rise to random force f(t) acting on
the particle. We assume that this force is isotropic, gaussian distributed (as a result of the central
limit theorem for the collisions), and uncorrelated at the observation timescales (the microscopic
timescale is very small).

Since f is Gaussian, it is enough to specify its average and its correlations:

⟨fα(t)⟩ = 0, ⟨fα(t)fβ(t′)⟩ = Λδαβδ(t− t′), (2.3)

with α, β = x, y, z (in dimension d = 3), δαβ = 1 if α = β and 0 otherwise. δ(t) is the Dirac delta function,
it should be understood physically as a function of unit integral (

∫∞
−∞ δ(t) = 1) that is concentrated on

a vanishingly small interval around 0. For the moment, Λ is an arbitrary parameter.

13
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We can now write Newton’s equation of motion for the particle:

m
dv

dt
= −λv −∇U(r) + f(t) (2.4)

where −∇U is the force exterted by the external potential on the particle. This stochastic differential
equation is known as the Langevin equation. For the moment, we do not attempt to give a precise
mathematical meaning.

2.1.3 Side remark: increments scaling as
√
∆t

Before continuing, let us make a brief aside and define the time integral of f(t) in dimension 1,

dW

dt
= f(t) ⇔ W (t) =

∫ t

0

f(s)ds. (2.5)

It is interesting to look at the increment ∆W of W over a short time ∆t,

∆W = W (t+∆t)−W (t) =

∫ t+∆t

t

f(s)ds. (2.6)

∆W is a Gaussian random variable (as a linear combination of Gaussian random variables). It has a
vanishing average ⟨∆W ⟩ = 0 and a variance

⟨(∆W )2⟩ =
∫ t+∆t

t

ds

∫ t+∆t

t

ds′⟨f(s)f(s′)⟩ =
∫ t+∆t

t

ds

∫ t+∆t

t

ds′δ(s− s′) = Λ∆t. (2.7)

That means that ∆W scales as O(
√
∆t), instead of O(∆t) for a regular function. Most of the diffi-

culties associated with stochastic differential equations (such as the Langevin equation) come from this
observation.

For completeness, the probability distribution of ∆W is

P (∆W ) =
1√

2πΛ∆t
e−

(∆W )2

2Λ∆t . (2.8)

2.1.4 Velocity correlations and important relations
Fluctuation-dissipation relation

We now manipulate Eq. (2.4) in the absence of external potential (U = 0). In the process, we will obtain
several important relations. When U = 0, Eq. (2.4) is an inhomogeneous first order differential equation
for v. Setting the initial condition at time t0, the general solution is

v(t) = v(t0)e
−ζ(t−t0) +

1

m

∫ t

t0

ds e−ζ(t−s)f(s), (2.9)

with ζ = λ/m the relaxation rate of the system. Equilibrium is reached when the system has had an
infinite time to equilibrate, that is to say when t0 → −∞. The initial condition is forgotten, leading to

v(t) =
1

m

∫ t

−∞
ds e−ζ(t−s)f(s). (2.10)

Since ⟨f(t)⟩ = 0, the average value of the velocity vanishes: ⟨v(t)⟩ = 0. Using Eq. (2.3), we can compute
the correlation at equal time,

⟨v(t)2⟩ = 1

m2

∫ t

−∞
ds

∫ t

−∞
ds′e−ζ(2t−s−s′)⟨f(s) · f(s′)⟩ = dΛ

m2

∫ t

−∞
ds e−2ζ(t−s) =

dΛ

2ζm2
, (2.11)

where d is the dimension of the system. At equilibrium, the equipartition of energy should hold:

1

2
m⟨v(t)2⟩ = d

kBT

2
. (2.12)

This fixes the noise strength Λ in terms of the friction coefficient λ and the temperature T :

Λ = 2λkBT (2.13)

This relation is known as a fluctuation-dissipation relation: it indeed relates the fluctuations Λ of the
random force to the dissipation λ in the fluid.
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Diffusion constant

An interesting quantity to consider is the diffusion coefficient D. Let us define the displacement ∆r(t) =
r(t) − r(0). Anticipating on the result, we may expect that the displacement has a Brownian motion
scaling, that is to say that the variance is proportional to time: ⟨(∆r)2⟩ ∼

t→∞
2dDt at equilibrium. In

other words, D is defined as

D =
1

2d
lim
t→∞

d⟨∆r2⟩
dt

=
1

2
lim
t→∞

d⟨∆x2⟩
dt

. (2.14)

Here ∆x denotes any of the components of ∆r; they are all equivalent by isotropy, and mutually inde-
pendent (this will be shown below).

Green-Kubo relation

By definition, ∆r =
∫ t

0
ds v(s). This leads to

d

dt
⟨∆r2⟩ = d

dt

∫ t

0

ds

∫ t

0

ds′⟨v(s) · v(s′)⟩ = 2

∫ t

0

ds⟨v(t) · v(s)⟩ = 2

∫ t

0

ds′⟨v(s′) · v(0)⟩. (2.15)

The key ingredient behind the last equality is the time translation invariance that holds at equilibrium:
⟨v(t+τ) ·v(t)⟩ = ⟨v(τ) ·v(0)⟩ (this will be shown below). Using Eqs. (2.14)-(2.15), the diffusion constant
is expressed as:

D =
1

d

∫ ∞

0

dt ⟨v(t) · v(0)⟩ (2.16)

This relation connects a kinetic coefficient (D) to a dynamic correlation function. It is known as a
Green-Kubo relation.

Einstein relation

Let us now compute explicitely the velocity correlations ⟨vα(t+ τ)vβ(t)⟩ (τ > 0) from Eq. (2.10), where
α and β are spatial components.

⟨vα(t+ τ)vβ(t)⟩ =
1

m2

∫ t+τ

−∞
ds

∫ t

−∞
ds′e−ζ(2t+τ−s−s′)⟨fα(s)fβ(s′)⟩ (2.17)

= δαβ
Λ

m2

∫ t

−∞
dse−ζ(2t+τ−2s) (2.18)

= δαβ
Λ

2m2ζ
e−ζτ (2.19)

This shows, as expected, both the independence of the spatial component, and the time translation
invariance. We can now inject the expression of the velocity correlation in the Green-Kubo relation (2.16),
and use the fluctuation-dissipation relation (2.13) to obtain

D =
kBT

λ
(2.20)

This relation between the diffusion constant and the friction coefficient is known as the Einstein relation.

2.1.5 The Fokker-Planck equation in dimension 1

Let us start from the Langevin equation (2.4) without external potential, and for simplicity in 1D:

m
dv

dt
= −λv + f(t), (2.21)

with ⟨f(t)⟩ = 0 and ⟨f(t)f(t′)⟩ = Λδ(t − t′). Our final goal is to obtain a (deterministic) differential
equation for the time evolution of the probability P (v, t) that the particle has velocity v at time t.
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Statistics of the velocity increments

It is first useful to compute to the statistics of a velocity increment w = v(t+∆t)− v(t). We note that
the process is Markovian, that is to say that the evolution of v is given only by its value at the time
considered (and not its value in the past): w depends only on ∆t and v(t). The formal expression of w is

w = −ζ

∫ t+∆t

t

v(t′)dt′ +
1

m

∫ t+∆t

t

f(t′)dt′. (2.22)

We can now compute the moments of w at order ∆t. First the average,

⟨w⟩ = −ζv∆t+O(∆t2), (2.23)

with v = v(t). And then the variance,

⟨w2⟩ = ζ2
∫∫ t+∆t

t

dt′dt′′⟨v(t′)v(t′′)⟩ − 2ζ

m

∫∫ t+∆t

t

dt′dt′′⟨f(t′)v(t′′)⟩+ 1

m2

∫∫ t+∆t

t

dt′dt′′⟨f(t′)f(t′′)⟩.

(2.24)

Let us investigate the three terms of this expression:

• Since ⟨v(t′)v(t′′)⟩ ≈ v(t)2 when ∆t is small, the first term is of order (∆t)2.

• The second term is the most complicated to deal with. We need to compute the correlations between
the velocity and the random force: g(t, t0) = ⟨v(t)f(t0)⟩. By causality, the velocity at a given time
is not affected by the noise in the future: g(t, t0) = 0 if t < t0. Then, by multiplying Eq. (2.21) by
f(t0) and averaging, one finds

∂tg(t, t0) = −ζg(t, t0) +
Λ

m
δ(t− t0). (2.25)

For t > t0, this gives g(t, t0) = Ae−ζ(t−t0). And integrating between t−0 and t+0 , one obtains
g(t+0 , t0)− g(t−0 , t0) =

Λ
m . This leads to A = g(t+0 , t0) = Λ/m. Finally,

⟨v(t)f(t0)⟩ =

{
Λ
me−ζ(t−t0) if t > t0

0 if t < t0
. (2.26)

One checks that the double integral in Eq. (2.24) is of order (∆t)2:
∫∫ t+∆t

t
dt′dt′′⟨f(t′)v(t′′)⟩ =

O(∆t2).

• The third term of Eq. (2.24) is easy to compute from the correlations of the random
force:

∫∫ t+∆t

t
dt′dt′′⟨f(t′)f(t′′)⟩ = Λ∆t.

At the end of the day, Eq. (2.24) reduces to

⟨w2⟩ = Λ

m2
∆t+ o(∆t) = 2ζ2D∆t+ o(∆t), (2.27)

where we used the fluctuation dissipation relation (2.13) and the Einstein relation (2.20). D is the
diffusion coefficient of the particle.

More generally, the moments of the velocity increments can be written as

⟨wn⟩ = Mn(v)∆t+ o(∆t). (2.28)

We already computed M1 = −ζv and M2 = 2ζ2D.
An important remark, that we state here without proof, is that the statistics of w is actually Gaussian.

This comes from the fact that v derives from a linear equation with Gaussian noise. The Gaussianity of
w implies that moments for n ≥ 3 are expressed as powers of ⟨w⟩ and ⟨w2⟩. As such, ⟨wn⟩ = O(∆t2) for
n ≥ 3, that is to say Mn = 0 for n ≥ 3.
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Kramers-Moyal expansion

We now focus of the probability P (v, t) of observing a velocity v at time t. We denote π(w, v,∆t) the
probability of having a velocity increment v between t and t+∆t that we studied previously. Since the
process is Markovian, we can write the probability of v at time t+∆ as an integral over the increments:

P (v, t+∆t) =

∫ ∞

−∞
dwP (v − w, t)π(w, v − w,∆t). (2.29)

For small ∆t, w is small. We can expand P (v − w, t) around v, refactor the expression, and use the
definition of the moments of w:

P (v, t+∆t) =

∫ ∞

−∞
dw

∞∑
n=0

(−w)n

n!

∂n

∂vn
[P (v, t)π(w, v,∆t)] , (2.30)

=

∞∑
n=0

(−1)n

n!

∂n

∂vn

[
P (v, t)

∫ ∞

−∞
dwwnπ(w, v,∆t)

]
, (2.31)

= P (v, t) +

∞∑
n=1

(−1)n

n!

∂n

∂vn
[P (v, t)⟨wn⟩]. (2.32)

Finally, since the moments scale linearly with time, Eq. (2.28), we obtain the Kramers-Moyal expan-
sion:

∂P (v, t)

∂t
=

∞∑
n=1

(−1)n

n!

∂n

∂vn
(MnP ) (2.33)

This equation holds for an arbitrary statistics of the increments w, beyond the specifics of Eq. (2.21).

Fokker-Planck equation

The Kramers-Moyal expansion is almost always truncated at order n = 2, either because this truncation
is exact (as in our Gaussian case Mn = 0, n ≥ 3) or as an approximation. This leads to the Fokker-Planck
equation:

∂P (v, t)

∂t
= − ∂

∂v
(M1P ) +

1

2

∂2

∂v2
(M2P ) (2.34)

For our specific Langevin equation (2.21), the associated Fokker-Planck equation is

∂P (v, t)

∂t
=

∂

∂v
(ζvP ) +

∂2

∂v2
(ζ2DP ) (2.35)

Note that this is often written as a continuity equation with a current J(v, t),

∂P (v, t)

∂t
= −∂J(v, t)

∂x
, (2.36)

J(v, t) = −ζvP − ∂

∂v
(ζ2DP ). (2.37)

Stationary solution

The Fokker-Planck equation (2.35) can be actually solved starting from an initial probability distribution
P (v, 0) = δ(v − v0), and therefore from an arbitrary intial probability law. We shall not do this here.
Instead, we restrict ourselves to the stationary solution satifying ∂tPstat = 0. We look for a solution with
no flux: Jstat(v, t) = 0:

ζ2D
∂Pstat(v)

∂v
+ ζvPstat(v) = 0. (2.38)

We solve this equation and obtain

Pstat(v) = Ce−
1

2ζD v2

= Ce
− 1

kBT
1
2mv2

, (2.39)

where we used the Einstein relation (2.20). After all this work, we do obtain, as expected, the equilibrium
probability distribution of the canonical ensemble!
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Backward Kolmogorov equation

As a side remark, it is instructive to know that there is a “backwards” equivalent to the Fokker-Planck
equation. One considers the probability P (vf , tf ; vi, ti) that the particle has a velocity vf at time tf
knowing that it had a velocity vi at time ti < tf . The goal is to study the dependence of the process
at fixed final state (vf , tf ) when the initial condition is varied. The resulting equation is known as the
backward Kolmogorov equation. We state it both generally and in our specific case:

∂P (vf , tf ; vi, ti)

∂ti
= −M1(vi)

∂P

∂vi
−M2(vi)

1

2

∂2P

∂v2i
(2.40)

= −ζvi
∂P

∂vi
− ζ2D

∂2P

∂v2i
. (2.41)

Formally, the backward and the forward (Fokker-Planck) equations can be written as

∂P (vf , tf ; vi, ti)

∂ti
= −LiP (vf , tf |vi, ti), (2.42)

∂P (vf , tf ; vi, ti)

∂tf
= L†

fP (vf , tf |vi, ti), (2.43)

where Li acts on vi and Lf on vf . The operators are

L• = M1(v)
∂

∂v
•+1

2
M2(v)

∂2

∂v2
•, (2.44)

L†• = − ∂

∂v
[M1(v)•] +

1

2

∂2

∂v2
[M2(v)•] . (2.45)

L† is the adjoint of L in the sense that
∫
dv[Lf ](v)g(v) =

∫
dvf(v)[L†g](v) for all functions f(v), g(v).

2.1.6 The general Fokker-Planck equation
Fokker-Planck equation for a multidimensional process

Let us consider an arbitrary (Markovian) stochastic process in dimension m, X(t) = (X1(t), . . . , Xm(t)).
We denote its increments Y = X(t+∆t)−X(t) and assume that the lowest moments read

⟨Yi⟩ = M
(1)
i (X)∆t+ o(∆t), (2.46)

⟨YiYj⟩ = M
(2)
ij (X)∆t+ o(∆t), (2.47)

where i, j are components of the vector. M (1) is called the drift vector, and M (2) is (twice) the diffusion
matrix. The higher order correlations are either zero (Gaussian process) or neglected for the analysis. The
framework that we developed in the 1D case can be extended and we obtain the following Fokker-Planck
equation for the probability P (X, t):

∂P (X, t)

∂t
= −

m∑
i=1

∂

∂Xi

[
M

(1)
i (X)P (X, t)

]
+

1

2

m∑
i,j=1

∂

∂Xi∂Xj

[
M

(2)
ij (X)P (X, t)

]
(2.48)

Multidimensional Langevin equation

The stochastic process is often given by a m-dimensional Langevin equation (with additive diagonal
noise),

dXi

dt
= gi(X) +

√
2Diηi(t), (2.49)

where gi is the deterministic drift part and ηi are Gaussian white noises satisfying ⟨ηi(t)⟩ =
0, ⟨ηi(t)ηj(t′)⟩ = δijδ(t− t′). We will come back to this type of equation in the next section.

From Eq. (2.49) one can prove that M (1) and M (2) are given by

M
(1)
i (X) = gi(X) M

(2)
ij = 2Diδij . (2.50)

Note that we restricted ourselves to additive noise: Di is assumed to be independent of X. We will
treat multiplicative noise later. The generalization of Eq. (2.50) to Di(X) will be true only in the Ito
formalism.
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Kramers equation

It is now time to come back to the Langevin equation with potential (2.4). We write it as a system of
first order equations,

dr

dt
= v, (2.51)

dv

dt
= −ζv − 1

m
∇U(r) +

1

m
f(t). (2.52)

The state of the system is X = (r1, . . . , rd, v1, . . . , vd). From Eq. (2.49) and (2.50), we deduce that the
evolution of the probability P (r,v, t) is given by

∂P (r,v, t)

∂t
= −∇r · [vP ] +∇v ·

[(
ζv +

1

m
∇U(r)

)
P

]
+D∇2

vP (2.53)

where ∇r and ∇v denote respectively the gradients with respect to r and v. This equation is known as
Kramers equation.

The equilibrium probability distribution (2.1),

Peq(v, r) =
1

Z
e
− 1

kBT

(
mv2

2 +U(r)
)
, (2.54)

is a stationary solution of the Kramers equation. One indeed checks that

∇r · [vPeq] = ∇v ·
[
1

m
∇U(r)Peq

]
(2.55)

and that

ζvPeq +D∇Peq = 0 (2.56)

given the fluctuation-dissipation relation (2.13) and Einstein relation (2.20). We have acheived our goal
of building a dynamical theory consistent with thermal equilibrium.

2.1.7 The overdamped regime
Overdamped Langevin equation

In a lot of situations, we can neglect the inertial term (m∂tv) in the Langevin equation (2.4). This is
the case when the dynamics is strongly overdamped (strong viscous friction) and we are not interested
in the short time scales (of order ζ−1). The motion of the particle is assumed to be described by the
overdamped Langevin equation,

λ
dr

dt
= −∇U(r) + f(t). (2.57)

The velocity degrees of freedom (which are assumed to relax fast) have disappered from the problem and
we are left with the position r only.

Smoluchovski equation

The Fokker-Planck equation (2.48) for the probability distribution p(r, t) associated with the overdamped
Langevin equation is known as the Smoluchovski equation. It reads

∂p(r, t)

∂t
=

1

λ
∇ · [∇U(r)p(r, t)] +

kBT

λ
∇2p(r, t) (2.58)

where we used the fluctuation-dissipation relation (2.13). Note that the Smoluchovski equation can be
derived as the large friction limit of the Kramers equation (2.53) (but it is not trivial to do it properly).

It is customary to write the Smoluchovski equation as a continuity equation

∂p(r, t)

∂t
= −∇ · j(r, t), (2.59)

j(r, t) = − 1

λ
[∇U(r)p(r, t) + kBT∇p(r, t)] . (2.60)
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The solution with no flux j = 0 is the equilibrium probability peq(r).

∇peq(r)

peq(r)
= ∇ ln peq(r) = −∇U(r)

kBT
(2.61)

ln peq(r) = −U(r)

kBT
+ c (2.62)

peq(r) ∝ e
− U(r)

kBT (2.63)

As expected, we obtain the Boltzmann distribution.

Non-equilibrium free energy

As for discrete random variables, we can define a non-equilibrium free energy and show that it is a
Lyapunov function (its time derivative is always negative). Given a probability distribution p(r, t), we
can define an internal energy E(t) and an entropy S(t) by

E(t) =

∫
dr p(r, t)U(r), S(t) = −kB

∫
dr p(r, t) ln p(r, t). (2.64)

From this, we define a (non equilibrium) free energy F (t) and a free energy density f(r, t),

F (t) = E(t)− TS(t) =

∫
dr p(r, t) [U(r) + kBT ln p(r, t)] =

∫
dr p(r, t)f(r, t), (2.65)

f(r, t) = U(r) + kBT ln p(r, t). (2.66)

The time evolution of this free energy is given by

dF

dt
=

∫
dr

∂p(r, t)

∂t
{U(r) + kBT [ln p(r, t) + 1]} (2.67)

=

∫
dr

∂p(r, t)

∂t
f(r, t). (2.68)

We used the conservation of the total probability: ∂
∂t

∫
dr p(r, t) = 0. We now inject the Smoluchovski

equation (2.58) and perform an integration by parts.

dF

dt
=

1

λ

∫
dr∇ · [∇U(r)p(r, t) + kBT∇p(r, t)] f(r, t) (2.69)

= − 1

λ

∫
dr [∇U(r)p(r, t) + kBT∇p(r, t)] · ∇f(r, t) (2.70)

= − 1

λ

∫
dr p(r, t) [∇U(r) + kBT∇ ln p(r, t)] · ∇f(r, t) (2.71)

= − 1

λ

∫
dr p(r, t)∥∇f(r, t)∥2. (2.72)

This implies that dF
dt ≤ 0. It is a Lyapunov function of the system. It becomes zero when ∇f = 0 that

is to say when the system is at equilibrium, with the Boltzmann probability law peq(r) ∝ e
− U(r)

kBT .

2.2 Several models in and out-of-equilibrium

2.2.1 Particles in a 1D ratchet potential
Overdamped particle in a ratchet potential

As a first example, let us consider a Brownian particle in a periodic potential. We define

U(x) = U0

[
sin

(
2πx

L

)
+ α sin

(
4πx

L

)]
, (2.73)

with x ∈ [0, L] is the coordinate on a circle of length L. The case α = 0 corresponds to a symmetric sine
potential, while α ̸= 0 leads to a left/right asymetry, see Fig. 2.1. This asymmetry is reminiscent of the
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Figure 2.1: Periodic potential U(x) according to Eq. (2.73) for α = 0 and 0.2 (U0 = 2, L = 1). Equilibrium
probability laws at temperature kBT = 1, Eq. (2.78). The asymmetric potential (α = 0.2) mimicks the
Feynman ratchet thought experiment (aegon, CC BY-SA 3.0, via Wikimedia Commons).

Feynman ratchet thought experiment, see Fig. 2.1. Imagine a wheel blocked by a ratchet that allows a
single direction of rotation. Can we use thermal energy to make the wheel turn in this direction? If so,
we are able to extract work from a single-temperature system and therefore to break the second law of
thermodynamics!

The equations of motion of the particle were derived in the previous section. The overdamped Langevin
equation for the position is

λ
dx

dt
= −∂xU(x) + f(t), (2.74)

(2.75)

and the associated Fokker-Planck (or Smoluchovski) equation is

∂p(x, t)

∂t
= −∂xJ(x, t), (2.76)

J(x, t) = − 1

λ
[∂xU(x)p(x, t)− kBT∂xp(x, t)]. (2.77)

The equilibrium probability law is the Boltzmann probability law

peq(x) =
1

Z
e
−U(x)

kBT , (2.78)

see Fig. 2.1. It corresponds to an absence of net flux: Jeq = 0. The answer to the Feynman paradox is
that the ratchet needs to be connected to a spring. The thermal fluctuations leading to an ‘opening’ of
ratchet and a wheel turning in the ‘wrong’ direction are as likely as fluctuations leading to a ‘correct’
rotation. The wheel does not turn on average.

We now examine two out-of-equilibrium situations: when the particle is forced, and when its noise is
correlated in time.

Driven overdamped Brownian particle

Let us add an external constant force F on the particle. The Langevin equation becomes

λ
dx

dt
= F − ∂xU(x) + f(t). (2.79)
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In the Fokker-Planck equation, the external force is simply added to the one coming from the potential:

∂p(x, t)

∂t
= −∂xJ(x, t), (2.80)

J(x, t) = − 1

λ
[(∂xU(x)− F )p(x, t)− kBT∂xp(x, t)]. (2.81)

We shall see that there is no (normalizable) stationary solution to this solution with zero flux. Instead,
the stationary solution, ∂tp(x, t) = 0, leads to the more general relation ∂xJ(x, t) = 0 that is to say to a
constant homogeneous flux J(x) = Jstat. The stationary flux and the stationary probability pstat(x) are
linked by

kBT∂xpstat(x) + ∂xW (x)pstat(x) = −λJstat, (2.82)

with W (x) = U(x)− Fx. The solution of this first-order differential equation is

pstat(x) = e−βW (x)

[
A− λβJstat

∫ x

0

dx′eβW (x′)

]
. (2.83)

We end up with two unknown constants Jstat and A. Their values are set by (i) imposing the periodic
of the solution pstat(L) = pstat(0), and (ii) using the normalization of the probability law

∫ L

0
pstat(x)dx.

This leads to the two equations

A
(
1− e−βFL

)
− λβJstat

∫ L

0

dxeβW (x) = 0, (2.84)

A

∫ L

0

dxe−βW (x) − λβJstat

∫ L

0

dxe−βW (x)

∫ x

0

dx′eβW (x′) = 1. (2.85)

After some manipulations, we obtain the stationary flux

Jstat =
kBT

λ

1− e−βFL∫ L

0
dxeβW (x)

∫ L

0
dxe−βW (x) − (1− e−βFL)

∫ L

0
dxe−βW (x)

∫ x

0
dx′eβW (x′)

. (2.86)

This expression is a bit tedious, but takes a simple form at small force F ≪ kBT that is to say in the
linear response regime:

Jstat ∼
FL

λ

1∫ L

0
dxeβU(x)

∫ L

0
dxe−βU(x)

, (2.87)

where U(x) is the potential in which the particle is dragged. In general, the integrals cannot be computed
explicitely. An exception is the sine potential, Eq. (2.73) with α = 0, U(x) = U0 sin(2πx/L). In this case,

Jstat ∼
F

λL

[
I0

(
U0

kBT

)]−2

, (2.88)

where I0 is a modified Bessel function. One can show that the average velocity of the particle is ⟨v⟩ =
LJstat. Eq. (2.88) therefore gives the linear response relation,

λ⟨v⟩
F

=

[
I0

(
U0

kBT

)]−2

. (2.89)

Fig. 2.2 shows the stationary flux as a function of the force for both the symmetric and asymmetric
potential. For the asymmetric potential (α = 0.2), we remark that the response to +F is different from
the response to −F . If one uses a slow oscilatory forcing (for instance +F for t ∈ [0, T/2] and −F for
t ∈ [T/2, T ], etc.), the particle would move on average to the left!

Active Ornstein-Uhlenbeck particle

We saw that for a particle at thermal equilibrium, there is no net flux, even in an asymmetric potential?
But what about an out-of-equilibrium particle that has a noise ξ(t) that is correlated in time. We
introduce the model of the active Ornstein-Uhlenbeck particle (AOUP) in which ξ(t) is an Ornstein-
Uhlenbeck process. The Langevin equations are

dx

dt
= − 1

λ
∂xU(x) + ξ(t), (2.90)

τ
dξ

dt
= −ξ +

√
2Dη(t), (2.91)
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Figure 2.2: Stationary flux Jstat as a function of the force F on a particle in a periodic potential,
Eq. (2.73). The solid lines correspond to Eq. (2.86) and the dashed black lines are the linear response
from Eq. (2.87). When the potential is asymmetric (α = 0.2), the (non-linear) response to a force is also
asymmetric: a forcing to the left leads to a greater velocity than a forcing to the right. This is shown
graphically with the dotted lines that correspond to the opposite potential −U(x).
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Figure 2.3: Numerical solution of the stationary solution of the Fokker-Planck equation for an AOUP in
an external potential, Eq. (2.94) with U(x) given by Eq. (2.73) (parameters: U0 = 0.2, λ = D = τ = 1).
When the potential is symmetric (α = 0) there is no net motion of the particle J(x) =

∫
dvP (x, v) = 0.

But when the potential is asymmetric (α = 0.2), there is a net flux to the right (J ≈ −0.04). This is seen
from the slight asymetry of the cut P (xmin, v) where xmin is the minimum of the potential: the reversed
curve (v 7→ −v) is shown with black dots.
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with η(t) a Gaussian white noise with average ⟨η(t)⟩ = 0 and unit covariance ⟨η(t)η(t′)⟩ = δ(t − t′).
When τ = 0, we recover the equilibrium Langevin equation (ξ(t) =

√
2Dη(t)). Eq. (2.91) is an Ornstein-

Uhlenbeck process: the statistics of ξ is obtained as we did in the previous section. In particular, the
stationary convariance is ⟨ξ(t)ξ(t′)⟩ = D

τ e
−|t−t′|/τ . We note that τ is the correlation time of the noise.

The equations (2.90)-(2.91) can be recast in term of the variables (x, v) where v = ∂tx is the velocity
of the particle. The rearrangement leads to

dx

dt
= v, (2.92)

τ
dv

dt
= −v − 1

λ
(∂xU + τv∂xxU) +

√
2Dη(t). (2.93)

Again, the case τ = 0 gives back the equilibrium Langevin equation. We can finally obtain a Fokker-
Planck equation for the probability P (x, v, t) that the particle is at x with a velocity v at time t. Following
the methods of the previous section, we have

∂P

∂t
(x, v, t) = −∂Jx

∂x
− ∂Jv

∂v
, (2.94)

Jx(x, v, t) = vP (x, v, t), (2.95)

Jv(x, v, t) = −1

τ

[
v +

1

λ
(∂xU + τv∂xxU)

]
P (x, v, t)− D

τ2
∂P

∂v
(x, v, t). (2.96)

If we focus only on the probablity p(x, t) =
∫
dvP (x, v, t), we can write

∂p

∂t
(x, t) = −∂J

∂x
(2.97)

J(x, t) =

∫
dvJx(x, v, t) =

∫
dv vP (x, v, t). (2.98)

Eq. (2.94) is hard to handle analytically, but we can solve it numerically. The stationary probability
Pstat(x, v) is plotted in Fig. 2.3. For a symmetric potential (α = 0), the stationary flux Jstat = J(x, t) = 0
vanishes. On the other hand, for an asymmetric potential, we have a net flux Jstat < 0. Introducing
a time-correlated noise make the particle move on average to the left! This is an example of a non-
equilibrium stationary state (NESS). We also notice that as soon as a system is out-of-equilibrium, there
is a possibility to extract work from it, something we cannot do at equilibrium.

2.2.2 Active Brownian particle in 2D
Let us now introduce an example of self-propelled particle in 2D. Such a self-propulsion implies that the
particle has access to an external energy source and is therefore out of equilibrium. There are several
possible models: active Brownian particle (ABP), run-and-tumble particle, active Ornstein-Uhlenbeck
particle (cf previous subsection). Let us describe an ABP. It moves at a velocity U in some direction θ
in the plane. And this orientation is diffusing in time with a coefficient Dr. The equations of motion are

dr

dt
= U ê(θ(t)), (2.99)

dθ

dt
=
√
2Drν(t) (2.100)

with ê(θ) =

(
cos θ
sin θ

)
and ν(t) a Gaussian white noise of unit variance (⟨ν(t)ν(t′)⟩ = δ(t − t′)). For

simplicity we did not add a noise term in the equation for r. The particle reorient itself of a timescale
D−1

r , which corresponds to a persistence length ℓp = U/Dr (typical distance over which the trajectory is
straight).

One can write a Fokker-Planck equation for the probability P (r, θ, t) that the particle is at a position
r with orientation θ at time t:

∂P

∂t
(r, θ, t) = −∇ · [U ê(θ)P (r, θ, t)] +Dr

∂P

∂θ2
(r, θ, t). (2.101)

We shall not work directly with the Fokker-Planck equation. Instead, we compute the mean square
displacement (MSD)

∆2(t) =
〈
[r(t)− r(0)]

2
〉

(2.102)
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Figure 2.4: (a) Typical trajectory of an active Brownian particle (U = Dr = 1). (b) Mean square
displacement ∆2 from Eq. (2.107). The two black lines show the slopes 2 and 1 corresponding to the
limits of short and large times. (c) Motility-induced phase separation (U = 100, Dr = 1, simulations:
Nikita Allaglo). At high activity an assembly of ABPs separate into a dense cluster and a dilute phase.

directly from the Langevin equations (2.99)-(2.100). We remind the reader that for a diffusive particle
∆2 ∼ t while for a ballistic particle (propagating in a straight line) ∆2(t) ∼ t2. Injecting Eq. (2.99) into
Eq. (2.102), we obtain

∆2(t) = U2

〈∫ t

0

dt1ê(θ(t1)) ·
∫ t

0

dt2ê(θ(t2))

〉
= U2

∫ t

0

dt1

∫ t

0

dt2⟨cos [θ(t1)− θ(t2)]⟩. (2.103)

Since Eq. (2.100) is invariant by a time translation, it is enough to compute (for t > 0)

⟨cos [θ(T + t)− θ(t)]⟩ = Re⟨eiϕ(t)⟩, (2.104)

with

ϕ(t) = θ(t)− θ(0) =
√
2Dr

∫ t

0

dt′ν(t′). (2.105)

One checks that ϕ is a Gaussian random variable with average ⟨ϕ(t)⟩ = 0 and variance ⟨ϕ(t)2⟩ = 2Drt.
In Eq. (2.104), we recognize the characteristic function of ϕ1:

⟨cos [θ(T + t)− θ(t)]⟩ = Re ei⟨ϕ(t)⟩−
1
2 ⟨ϕ(t)

2⟩ = e−Drt. (2.106)

We can finally inject this expression in Eq (2.103) and obtain

∆2(t) =
2U2

Dr

(
t− 1− e−Drt

Dr

)
. (2.107)

It is useful to investigate the limits of short time and large time:

∆2(t) ∼

{
(Ut)2 if t ≪ D−1

r

2U2

Dr
t if t ≫ D−1

r

. (2.108)

The particle is ballistic at short time (with a velocity U) and diffusive at large time (with an effective
diffusion constant U2/Dr), see Fig. 2.4b.

As a side remark, an assembly of interacting ABPs, that repel one another at short distance, has a
highly non-trivial behavior at high density: the particles can separate in two phases: a dense one (“liquid”)
and a dilute one (“gas” ’). This phenomenon is known as motility-induced phase separation (MIPS), see
Fig. 2.4 and Ref. [5] for more details.

1Consider a Gaussian random variable x of average µ and standard deviation σ. Its probability law is p(x) =
1√

2πσ2
e−x2/(2σ2). The characteristic function is the Fourier transform of the probability law: G(k) = ⟨eikx⟩. Its ex-

pression is G(k) = eikµ−
1
2
σ2k2

.
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2.3 Multiplicative noise
When modeling a (1D) stochastic process x(t), we are tempted to write a general Langevin equation as

dx

dt
= a(x) + b(x)η(t), (2.109)

with η(t) a Gaussian white noise of unit variance ⟨η(t)η(t′)⟩ = δ(t − t′)2. In the previous sections, we
always had b(x) = b independent of x. In this case, called additive noise, Eq. (2.109) is well defined. But
when b depends explicitely on x, the noise is multiplicative, and we will see that Eq. (2.109) is ambiguous.
We will need to specify an interpretation of the stochastic differential equation.

The basic and advanced concepts of stochastic differential equations, in particular the discussion of the
Ito-Stratonovich dilemma, can be found in Refs. [6, 7], or in Ref. [8] for a more mathematical treatement.

2.3.1 Examples
Let us give some physically motivated examples of stochastic differential equations with multiplicative
noise.

• It may happen that a physical parameter of a system is subjected to thermal noise. For instance,
the frequency of an oscillator may be noisy. In this case, we talk about external noise. A simple
equation for a complex oscillator z(t) is

dz

dt
= iz(t)[ω +

√
2γη(t)], (2.110)

where ω is the average frequency of the oscillator and γ encodes the fluctuations of the frequency.

• Imagine a collection of n(t) radioactive particles decaying with average rate α. The fluctuations of
the decay rate are of the order of the fluctuations of the number of particles, that is to say

√
n. We

may write a stochastic equation of the form

dn

dt
= −αn(t) +

√
2Γn(t)η(t), (2.111)

where Γ set the scale of the fluctuations. Since the multiplicative nature of the noise comes from
the system itself, we talk about internal noise. (Note that this kind of problem is usually better
dealt at the discrete level with a master equation [6].)

• In mathematical finance, and in particular in the Black and Scholes model, the price of an asset
S(t) may be modeled by the following stochastic differential equation with multiplicative noise,

dS

dt
= µS(t) + σS(t)η(t), (2.112)

where σ is the volatility of the asset. This equation is also called geometric Brownian motion is a
more general context.

2.3.2 Interpreting the multiplicative noise
Let us try to give a meaning to Eq. (2.109). The main question is what is the value of ∆xt = x(t+∆t)−x(t)
for a small time increment ∆t?

We first consider the Brownian motion (or Wiener process) W (t) =
∫ t

0
dt η(t) and write ∆Wt =

W (t + ∆t) − W (t) =
∫ t+∆t

t
η(t)dt. It is easy to see that ∆Wt is a Gaussian variable with standard

deviation
√
∆t. ∆Wt is therefore of the order O(

√
∆t), which is much larger that ∆t. From Eq. (2.109),

we expect the same for ∆xt: it is also of order
√
∆t. This creates a problem when discretizing Eq. (2.109)

at order ∆t: we may write
x(t+∆t)− x(t) = a(x∗)∆t+ b(x∗)∆Wt. (2.113)

Clearly x∗ should be between x(t) and x(t+∆t). But these two values differ by an order
√
∆t. And we

can see that changing x∗ by O(
√
∆t) changes Eq. (2.113) by a factor O(∆t) that we cannot neglect!

We therefore need to prescribe the value of x∗. Two popular conventions are
2For simplicity, we do not include an explicit time dependence of a and b.
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• Ito interpretation: x∗ = x(t),

• Stratonovich interpretation: x∗ = 1
2 [x(t) + x(t+∆t)].

We now describe the consequences of each interpretation, without providing all the proofs that can be
found in the litterature [6, 7].

2.3.3 Ito interpretation and Ito formula

The Ito interpretation corresponds to x∗ = x(t) in Eq. (2.113). Eq. (2.109) becomes

x(t+∆t)− x(t)
I
= a(x(t))∆t+ b(x(t))∆Wt. (2.114)

We use the notation I
= to denote the Ito convention. Let us list a few properties of the Ito interpretation.

• It is natural from a mathematical perspective since the solution of the equation is a Markov process:
the time evolution of x(t) for t > t0 depends only on the value x(t0) and the realization of the noise
η(t) for t > t0. In particular the values of the process x(t) and of the noise η(t) at the same time
are independent: for an arbitrary function f we have ⟨f(x(t))η(t)⟩ = 0.

• However, one peculiarity is that the chain rule cannot be applied naively. Let us consider a function
f(x), and its increment ∆ft = f(x(t+∆t))−f(x(t)). Then ∆ft ̸= f ′(x(t))∆x. Instead, the correct
differentiation rule is

∆ft
I
=

[
a(x(t))f ′(x(t)) +

1

2
b(x(t))2f ′′(x(t))

]
∆t+ b(x(t))f ′(x(t))∆Wt, (2.115)

which may be written as

df

dt

I
= a(x(t))f ′(x(t)) +

1

2
b(x(t))2f ′′(x(t)) + b(x(t))f ′(x(t))η(t), (2.116)

with ⟨η(t)η(t′)⟩ = δ(t− t′). Note the additional term b(x)f ′(x)/2 compared with the naive expec-
tation. This important result is known as the Ito formula.

• The Fokker-Planck equation associated with the Ito stochastic differential equation is:

∂p

∂t
(x, t) = − ∂

∂x
[a(x)p(x, t)] +

1

2

∂2

∂x2

[
b(x)2p(x, t)

]
. (2.117)

Note that the Fokker-Planck equation defines uniquely the stochastic process. It is not subjected
to problems of interpretation.

Sketch of the derivation of the Ito formula, Eq. (2.116).

f (x(t+∆t)) = f (x(t) + a(x(t))∆t+ b(x(t))∆W ) (2.118)

= f(x(t)) + f ′(x(t)) {a(x(t))∆t+ b(x(t))∆W}+ 1

2
f ′′(x(t)) {a(x(t))∆t+ b(x(t))∆W}2

(2.119)

= f(x(t)) + f ′(x(t)) {a(x(t))∆t+ b(x(t))∆W}+ 1

2
b(x(t))2f ′′(x(t))(∆W )2 (2.120)

= f(x(t)) +

{
f ′(x(t))a(x(t)) +

1

2
b(x(t))2f ′′(x(t))

}
∆t+ f ′(x(t))b(x(t))∆W (2.121)

We restricted ourselves to order ∆t and use that (∆W )2 = ∆t. This last equality is actually rigourous
from a mathematical standpoint, but we shall not prove it here, see for instance [7, 8].
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Derivation of the Fokker-Planck equation, Eq. (2.117). Let us consider an arbitrary function f(x)
and consider the time evolution of its average ⟨f(x)⟩(t). From the Ito formula (2.116),

d⟨f(x)⟩
dt

=

〈
a(x(t))f ′(x(t)) +

1

2
b(x(t))2f ′′(x(t))

〉
(2.122)

=

∫
dx p(x, t)

[
a(x)f ′(x) +

1

2
b(x)2f ′′(x)

]
(2.123)

=

∫
dx f(x)

[
−∂x(a(x)p(x, t)) +

1

2
∂xx[b(x)

2p(x, t)]

]
. (2.124)

We introduced the probability distribution p(x, t) and performed integrations by parts. We notice that
we can also write ⟨f(x)⟩(t) =

∫
dxf(x)p(x, t), and therefore

d⟨f(x)⟩
dt

=

∫
dx f(x)∂tp(x, t). (2.125)

Using that f is an arbitrary function, Eqs. (2.124)-(2.125) give the Fokker-Planck equation (2.117).

2.3.4 Stratonovich interpretation
The Stratonovich interpretation corresponds to x∗ = x(t+∆t/2) in Eq. (2.113) (midpoint discretization).
Let us compare it to the Ito interpretation.

• It is unnatural at first sight since x(t) becomes an anticipating function.

• But one big advantage is that the chain rule holds:

∆f(x(t))
S
= f ′(x(t)) [a(x(t))∆t+ b(x(t))∆Wt] . (2.126)

• The Fokker-Planck equation in the Stratonovich convention reads:

∂p

∂t
(x, t) = − ∂

∂x
[a(x)p(x, t)] +

1

2

∂

∂x

[
b(x)

∂

∂x
(b(x)p(x, t))

]
. (2.127)

• By comparing the Fokker-Planck equations (2.117) and (2.127). One notices that one can go from
one interpretation to another by changing the drift term:

dx

dt

S
= a(x) + b(x)η(t) ⇔ dx

dt

I
=

[
a(x) +

1

2
b(x)∂xb(x)

]
+ b(x)η(t). (2.128)

The Ito or Stratonovich convention is merely a matter of choice: the same system can be described
in one interpretation or the other. Note that the change of drift term Eq. (2.128) is consistent with
the differentiation rules Eqs (2.116) and (2.126).

Equivalence between Ito and Stratonovich conventions. We prove our claims backward: we
prove Eq. (2.128), then Eq. (2.127) follows from the Ito Fokker-Planck equation, and Eq. (2.126) is an
application of the Ito formula.

Starting from Eq. (2.109) in the Stratonovich convention, we write3

x(t) = x(0) +

∫ t

0

dt′a(x(t′)) + S

∫ t

0

b(x(t′))η(t′)dt′ (2.129)

where S
∫

denotes the integral in the Stratonovich convention. We discretize the path into N intervals
of size ∆t and write tn = n∆t, xn = x(tn), ∆xn = xn+1 − xn, ∆Wn =

∫ tn+1

tn
η(t′)dt′. By definition the

Stratonovich integral is

S

∫ t

0

b(x(t′))η(t′)dt′ = lim
∆t→0

N−1∑
n=0

b

(
xn + xn+1

2

)
∆Wn. (2.130)

3The following lines are a bit sketchy, see Ref. [7], section 4.3.6. for more details.
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We expand b, use the Stratonovich value of ∆xn and only keep the terms up to order O(∆t).

S

∫ t

0

b(x(t′))η(t′)dt′ = lim
∆t→0

N−1∑
n=0

[
b(xn) +

1

2
b′(xn)∆xn + o((∆t)1/2)

]
∆Wn (2.131)

= lim
∆t→0

N−1∑
n=0

[
b(xn) +

1

2
b′(xn) (a(x

∗
n)∆t+ b(x∗

n)∆Wn) + o((∆t)1/2)

]
∆Wn (2.132)

= lim
∆t→0

N−1∑
n=0

b(xn)∆Wn +
1

2
b′(xn)b(xn)(∆Wn)

2 + o(∆t) (2.133)

= lim
∆t→0

N−1∑
n=0

b(xn)∆Wn +
1

2
b′(xn)b(xn)∆t+ o(∆t) (2.134)

= I

∫ t

0

b(x(t′))η(t′)dt′ +

∫ t

0

1

2
b′(x(t′))b(x(t′))dt′ (2.135)

The Ito integral is defined as

I

∫ t

0

b(x(t′))η(t′)dt′ = lim
∆t→0

N−1∑
n=0

b(xn)∆Wn. (2.136)

Injecting into Eq. (2.129), we obtain

x(t) = x(0) +

∫ t

0

dt′
[
a(x(t′)) +

1

2
b′(x(t′))b(x(t′))

]
+ I

∫ t

0

b(x(t′))η(t′)dt′. (2.137)

This provides the equivalent Ito equation, given by Eq. (2.128).

2.3.5 Which one to use for a given physical system?
Although one can choose freely the interpretation, the question of which one is the most natural for a
given system remains. In particular, it is natural to see a(x) as a force acting on the particle, that would
remain unchanged in the absence of noise.

Stratonovich for physical systems with external noise

In actual physical systems, the external noise has a finite correlation time τ . The delta-correlated noise

⟨η(t)η(t′)⟩ = δ(t− t′) (2.138)

is an idealization of something like

⟨ητ (t)ητ (t′)⟩ =
1

2τ
e−

|t−t′|
τ (2.139)

where we chose an exponential decay for simplicity. The equation
dx

dt
= a(x) + b(x)ητ (t) (2.140)

is well-defined (not subjected to a choice of interpretation), and it is natural to wonder what is the correct
limit of vanishing correlation time τ → 0. Wong and Zakai showed [9] that it is the Stratonovich equation

dx

dt

S
= a(x) + b(x)η(t). (2.141)

This provides a basis to use the Stratonovich interpretation for physical systems with external noise, see
Ref. [6] for a detailed discussion.

For instance, the noisy complex oscillator, Eq. (2.110) should be interpreted as (see Ref. [7])

dz

dt

S
= iz(t)[ω +

√
2γη(t)] ⇔ dz

dt

I
= z(t)[(iω − γ) + i

√
2γη(t)] (2.142)

One checks that the average value and the correlation are

⟨z(t)⟩ = z(0)e(iω−γ)t, (2.143)

⟨z(t)z(t′)∗⟩ = |z(0)|2eiω(t−t′)−γ|t−t′|. (2.144)

The noise induces a damping term: the initial condition is lost, and a dephasing is produced.
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Ito when explicitely assumed, and for internal noise

The Ito convention mostly occurs in situations where it is assumed from the start. As we said before it
is the most natural convention to start with from a mathematical perspective. The Ito convention is also
often the correct one for systems with internal noise: when the noise comes from the fluctuations of the
variable itself (such as a number of particles), it is reasonable to evaluate its variable at the beginning of
a time interval ∆t. We give a few examples with Ito convention below.

• The stochastic equation for radioactive decay, Eq. (2.111), is best interpreted in the Ito convention.
The Fokker-Planck equation is

∂p(n, t)

∂t
= α

∂

∂n
[np(n, t)] + Γ

∂2

∂n2
[np(n, t)] . (2.145)

This gives the expected equation for the decay of the average value,

d⟨n⟩
dt

= −α⟨n⟩. (2.146)

One checks that a different equation would have been obtained in the Stratonovich convention. See
Ref. [6] for more details.

• The geometric Brownian motion in the Black-Scholes model, Eq. (2.112), is to be understood in
the Ito sense,

dS

dt

I
= µS(t) + σS(t)η(t). (2.147)

Applying the Ito formula, one obtains

d

dt
logS = µ− 1

2
σ2 + ση(t), (2.148)

that is to say

S(t) = exp

[(
µ− 1

2
σ2

)
t+ σ

∫ t

0

dt′η(t′)

]
. (2.149)

The main question of option pricing is the following one. Assume that you are offered an option that
guarantees you to be paid an amount K(S(T )) at time T (for instance K(S(T )) = max(S(T )−K0, 0)
with fixed K0). What is the correct price of such an option at time t = 0? See Ref. [8] for more
details.

• In a latter chapter, we will introduce the stochastic partial differential equation for a density field
ρ(x, t), known as the Dean-Kawasaki equation [10]. The multiplicative noise will take the form√
ρ(x, t)η(x, t) with η a Gaussian white noise. The Ito convention will be assumed from the start

to perform the derivation from the microscopic equations for the particles.

2.3.6 Change of variables

Even for a stochastic differential equation with additive noise, a choice of convention may be needed.
The most obvious case is if one needs to consider averages of the type ⟨f(x(t))η(t)⟩ where x(t) is the
stochastic process, η(t) is the noise and f is an arbitrary function.

In practice the problem often arises when one performs a change of variable x̃(t) = ϕ(x(t)) where ϕ
is a non-linear function. Even if the noise in the equation for x(t) is additive, the noise for x̃(t) will be
multiplicative. Care must be taken when performing the change of variable. See Ref. [11] for a detailed
discussion.

A simple example is the kinetic energy of a particle. We start with the Langevin equation for the
velocity of the particle,

dv

dt
= −ζv +

√
2ζkBT

m
η(t), (2.150)

and define the kinetic energy K(v) = 1
2mv2. If we choose Stratonovich, we can perform the change of

variable as usual:
dK

dt

S
= K ′(v)

dv

dt

S
= −2ζK(v) +

√
4ζkBTK(v)η(t). (2.151)
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On the contrary, in the Ito interpretation, one needs to use the Ito formula (or the correspondance
between Ito and Stratonovich equation) to obtain

dK

dt

I
= −2ζK(v) + ζkBT +

√
4ζkBTK(v)η(t). (2.152)

This last equation gives the evolution of the average kinetic energy as d⟨K⟩
dt = −2ζ

(
⟨K⟩ − kBT

2

)
, and

therefore the averge kinetic energy at equilibrium: ⟨K⟩ = kBT
2 which satisfies the equipartition of energy.

2.4 Path integral approach to Langevin equation

Let us start with the following Langevin equation with additive noise,

dx

dt
= a(x(t)) +

√
2Dη(t), (2.153)

where η is a Gaussian white noise of unit variance. Our goal is to determine the probability of a given
path {x(t)} between times t = 0 and t = tf , knowing the initial position x0: P

[
{x(t)}tft=0|x0

]
.

Probability of a discretized path

In order to acheive our goal, we discretize Eq. (2.153) into N ≫ 1 time intervals of duration ∆t ≪ 1,
with tf = N∆t. Even for additive noise, path integrals require a precise discretization scheme [12]: we
choose the Stratonovich convention. We denote xn = x(n∆t) and obtain

xn+1 − xn = an∆t+
√
2D∆tγn, (2.154)

with γn independent Gaussian numbers of unit variance. Within the Stratonovich discretization,

an
S
= a

(
xn + xn+1

2

)
≈ a(xn) +

1

2
a′(xn)(xn+1 − xn). (2.155)

The probability of a discrete path x1, . . . , xN starting from x0 can be written as

PN (x1, . . . , xN |x0) =

N−1∏
n=0

p(xn+1|xn). (2.156)

We used the Markovian nature of the discrete process, and p(xn+1|xn) denotes the probability of observing
xn+1 knowning xn. Using Eqs. (2.154)-(2.155), we notice that γn and xn+1 are linked by an affine change
of variables,

γn =
1√

2D∆t

[(
1− 1

2
a′(xn)∆t

)
(xn+1 − xn)− a(xn)∆t

]
. (2.157)

The probability law of γn is p(γn) =
1√
2π

e−
γ2
n
2 . The change of variable, Eq. (2.157), leads to

p(xn+1|xn) =
1− 1

2a
′(xn)∆t

√
4πD∆t

e−
1

4D∆t [1−
1
2a

′(xn)∆t]
2
(xn+1−xn−a(xn)∆t)2 . (2.158)

For small ∆t, we can write the term inside the exponential at order ∆t as

p(xn+1|xn) ≈
1√

4πD∆t
e−∆t 1

2a
′(xn)e

−∆t 1
4D

(
xn+1−xn

∆t −a(xn)
)2

. (2.159)

The probability of a discrete path, Eq. (2.156), is

PN (x1, . . . , xN |x0) =
1

(2πD∆t)N/2
e
−∆t

∑N−1
n=0

[
1

4D

(
xn+1−xn

∆t −a(xn)
)2

+ 1
2a

′(xn)

]
. (2.160)
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Onsager-Machlup action

It is customary to write the continuous limit of Eq. (2.160) as

P
[
{x(t)}tft=0|x0

]
= N e−S[{x(t)}] (2.161)

with the action

S[{x(t)}] S
=

∫ tf

0

dt

(
1

4D
[ẋ(t)− a(x(t))]

2
+

1

2
a′(x(t))

)
(2.162)

and a diverging normalization factor N that we usually forget; note however that it is independent of
the initial condition and the force field. Eq. (2.162) is known as the Onsager-Machlup action.

The same computation can be done in the Ito formalism, and one obtains

S[{x(t)}] I
=

1

4D

∫ tf

0

dt [ẋ(t)− a(x(t))]
2
. (2.163)

Comment on the Ito and Stratonovich integrals

We stress that S[{x(t)}] is the same in Eqs. (2.162) and (2.163). The convention enters in the definition
of the integral from a discretized path. To emphasize this point, let us consider the following observable

Wα
α
=

∫ tf

0

ẋ(t)f(x(t))dt, (2.164)

where α = I or S. If f is a (position-dependent) force, Wα is interpreted as the work (see the next
chapter on stochastic thermodynamics). The integrals WI and WS are defined as

WI = lim
∆t→0

∆t

N−1∑
n=0

xn+1 − xn

∆t
f(xn), (2.165)

WS = lim
∆t→0

∆t

N−1∑
n=0

xn+1 − xn

∆t
f

(
xn + xn+1

2

)
, (2.166)

with xn = x(n∆t). Since xn+1 − xn = O(
√
∆t), the two definitions are not equivalent. In fact, assuming

Eq. (2.153), it can be shown that

WS = WI +D

∫ tf

0

f ′(x(t))dt, (2.167)

where the last integral is shown to be independent of the convention. One can prove that
∫
dt ẋ2(t)

and
∫
dt a(x(t))2 are also convention-independent. Therefore, Eq. (2.167) gives the equality between

Eqs. (2.162) and (2.163). In stochastic thermodynamics, the work will be assumed to be given by the
Stratonovich convention, Eq. (2.166) which is why we will stick to this convention. See Ref. [12] for more
details on these subtle issues.

Meaning of the Onsager-Machlup action

Let us finally point out that the meaning of Eqs. (2.161)-(2.162) is not clear from a mathematical perspec-
tive: (i) a typical path {x(t)} is typically non differentiable, so ẋ(t) is ill-defined, and (ii) the normalization
N is diverging. Both problems can be solved by considering two differentiable paths X1(t) and X2(t)
and writing the ratio of the probability that a realization x(t) of the stochastic differential equation is
close to one of the paths. The precise meaning of Eqs. (2.161)-(2.162) is

lim
ϵ→0

Prob (|x(t)−X1(t)| < ϵ ∀t ∈ [0, tf ])

Prob (|x(t)−X2(t)| < ϵ ∀t ∈ [0, tf ])
= e−S[{X1(t)}]+S[{X2(t)}]. (2.168)
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2.5 The Feynman-Kac formula
This section is mostly based on Chaps. 7 and 8 of Ref. [8]. We shall state the results without any proof.

Let us start with the generic Ito stochastic differential equation

dx

dt

I
= a(x(t)) + b(x(t))η(t), (2.169)

with ⟨η(t)η(t′)⟩ = δ(t − t′). We consider the probability P (xf , tf ;xi, ti) that the particle is at xf at
time tf knowing that it was at xi at time ti. The boundary condition (initial or final depending on the
context) is

P (xf , t;xi, t) = δ(xf − xi). (2.170)

We already saw the Fokker-Planck equation, also known as the forward Kolmogorov equation,

∂P (xf , tf ;xi, ti)

∂tf
= L†

fP (xf , tf ;xi, ti), (2.171)

with Eq. (2.170) as initial condition. But there is a backward equivalent, the backward Kolmogorov
equation

∂P (xf , tf ;xi, ti)

∂ti
= −LiP (xf , tf ;xi, ti), (2.172)

with Eq. (2.170) as final condition. Li acts on xi while L†
f acts on xf . The operator L is the generator

of the process4 and L† is its adjoint. In the case of Eq. (2.169), there are given by

Lf(x) = a(x)∂xf(x) +
1

2
b(x)2∂xxf(x), (2.173)

L†f(x) = −∂x[a(x)f(x)] +
1

2
∂xx[b(x)

2f(x)]. (2.174)

A slight generalization of the backward Kolmogorov equation is that if a function u(x, t) satifies the
system {

∂u(x,t)
∂t = −Lu(x, t) for t < tf

u(x, tf ) = Φ(x)
(2.175)

for an arbitrary final condition Φ at time tf , then u can be expressed as

u(xi, ti) = E [Φ(x(tf ))|x(ti) = xi] , (2.176)

where x(t) follows the stochastic differential equation (2.169), E denotes a conditional expectation (aver-
age given an initial condition), and ti ≤ tf . Eqs. (2.175)-(2.175) are actually equivalent. The backward
Kolmogorov equation (2.174) corresponds to the case Φ(x) = δ(x− xf ).

We can go further and add a space-dependent decay q(x). It may be interpreted as a probability that
at each small time interval the “particle” can disappear from the system, and then give no contribution
at the final time. We consider the partial differential equation{

∂v(x,t)
∂t = −Lv(x, t)− q(x)v(x, t) for t < tf

v(x, tf ) = Φ(x)
. (2.177)

It is equivalent to

v(xi, ti) = E
[
exp

(
−
∫ tf

ti

dt q(x(t))

)
Φ(x(tf ))

∣∣∣∣x(ti) = xi

]
, (2.178)

with x(t) following Eq. (2.169). This equivalence is known as the Feynman-Kac formula. The Feynman-
Kac formula enters into problem of mathematical finance (where Φ(x(tf )) is intepreted as a cost in
the future) for instance in the Black-Scholes formula [8]. It is also useful in some quantum mechanics
problems, in particular in connection with path integrals.

4Its formal definition is limϵ→0+
1
ϵ
(E[f(x(ϵ))|x(0) = x0]− f(x0)) = Lf(x0) for an arbitrary function f [8].
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Chapter 3

Driven systems

3.1 Correlation, linear response, and fluctuation-dissipation the-
orem

3.1.1 Statement of the fluctuation-dissipation theorem
We consider a system evolving with a stochastic dynamics compatible with equilibrium: master equation
with detailed balance, Langevin equation with the Einstein relation, etc. We define the different quantities
using the notations for a discrete system, but their definitions are similar for a continuous system.

A configuration of the system is defined by the probability pi to occupy the state i with energy Ei.
For an observable A taking the value Ai on the site i, we define its average value at time t as

⟨A(t)⟩ =
∑
i

Aipi(t). (3.1)

We can also define the two-time correlation of two observables:

⟨A(t)B(t′)⟩ =
∑
i,j

AiBjpi(t)pj(t
′). (3.2)

When the system is at equilibrium, the correlation function is a function of the time difference only:

⟨A(t)B(t′)⟩ = CAB(t− t′). (3.3)

We will compare this correlation to the linear response to an energy variation Ei → Ei − f(t)Bi,
where f(t) is the small force conjugated to the observable B. This force affects the average value of the
observable A: ⟨A(t)⟩ → ⟨A(t)⟩+ δ⟨A(t)⟩. In the linear response regime close to equilibrium, the variation
can be written as

δ⟨A(t)⟩ =
∫ t

−∞
RAB(t− t′)f(t′)dt′, (3.4)

which defines the response function RAB(t). Causality implies that RAB(t) = 0 for t < 0.
The fluctuation-dissipation theorem relates the response to the correlation: for t ≥ 0,

RAB(t) = − 1

T
ĊAB(t), (3.5)

where T is the temperature of the system.

3.1.2 Proof for a discrete system
Here, we assume that the probability distribution p(t) = (pi(t)) follows the master equation

ṗ(t) = Mp(t), (3.6)

where the components of M , the transition rates Mij , satisfy the detailed balance condition,

Mije
−Ej/T = Mjie

−Ei/T . (3.7)

35
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First, we compute the correlation at equilibrium, CAB(t) = ⟨A(t)B(0)⟩. At time 0, the system is at
equilibrium and the probability to observe the state j is peqj = e−Ej/T /Z, where the observable B takes
the value Bj . Being in the state j at time t = 0, the system as then the probability (etM )ij to be in the
state i at time t, where the observable A takes the value Ai. The correlation is thus

CAB(t) =
∑
i,j

Ai

(
etM

)
ij
Bjp

eq
j . (3.8)

Second, we compute the response to an energy change δEi = −f(t)Bi. This energy change induces a
change δM(t) in the transition rates, which have to satisfy detailed balance:

[Mij + δMij(t)] exp

(
−Ej − f(t)Bj

T

)
= [Mji + δMji(t)] exp

(
−Ei − f(t)Bi

T

)
. (3.9)

At first order in f(t), writing δM(t) = f(t)M ′, we find(
Mij

Bj

T
+M ′

ij

)
peqj =

(
Mji

Bi

T
+M ′

ji

)
peqi . (3.10)

The variation of the transition rates induce a variation of the probability distribution, pi = peqi + δpi,
which follows,

δṗ(t) = Mδp(t) + f(t)M ′peq. (3.11)

The solution is thus

δp(t) =

∫ t

−∞
e(t−t′)MM ′peqf(t′)dt′. (3.12)

From this, we deduce the variation of the average of the observable A:

δ⟨A(t)⟩ =
∑
i

Aiδpi(t) =

∫ t

−∞

∑
i,j

Ai

(
e(t−t′)MM ′

)
ij
peqj f(t′)dt′, (3.13)

which is of the form (3.4), with the response function

RAB(t) =
∑
i,j

Ai

(
etMM ′)

ij
peqj . (3.14)

We now use the detailed balance condition on the transition rates M ′
ij to express M ′peq. Summing over

j in Eq. (3.10), the right hand side vanishes because of probability conservation,
∑

j Mji =
∑

j M
′
ji = 0,

and we obtain ∑
j

M ′
ijp

eq
j = −Mij

Bj

T
peqj . (3.15)

Using this relation in the response (3.14) and the fact that ∂t(e
tM ) = etMM , we get

RAB(t) = − 1

T

∑
i,j

Ai

(
etMM

)
ij
Bjp

eq
j = − 1

T
ĊAB(t). (3.16)

3.1.3 Proof for a system obeying the Fokker-Planck equation

We can see how this demonstration translates for a continuous system, which we take one-dimensional
here, where the probability distribution p(x, t) obeys the Fokker-Planck equation associated to an over-
damped Langevin equation in a potential V (x):

ṗ(x, t) = ∂x
[
D∂xp(x, t) + λ−1p(x, t)∂xV (x)

]
. (3.17)

Defining the Fokker-Planck operator Lg(x) = ∂x
[
D∂xg(x) + λ−1g(x)∂xV (x)

]
, we can write the cor-

relation between the observables A and B as

CAB(t) = ⟨A(t)B(0)⟩ =
∫

A(x)
[
etL (Bpeq)

]
(x)dx. (3.18)
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We now turn to the response to the energy variation δV (x, t) = −f(t)B(x). This energy variation
induces a change in the differential operator, δL = f(t)L′, with L′g(x) = −λ−1∂x [g(x)∂xB(x)]. The
subsequent variation of the distribution, δp(x, t), follows

δṗ(x, t) = Lδp(x, t) + L′peq(x), (3.19)

and it is thus given by

δp(x, t) =

∫ t

−∞
e(t−t′)LL′peq(x)f(t′)dt′. (3.20)

The response function giving the variation of the average of the observable A is

RAB(t) =
δ⟨A(t)⟩
δf(0)

=

∫
A(x)etLL′peq(x)dx. (3.21)

In order to express L′peq as a function of L, we compute

L (Bpeq) (x) = ∂x
(
D∂x [B(x)peq(x)] + λ−1B(x)peq(x)∂xV (x)

)
= D∂x [p

eq(x)∂xB(r)] = −TL′peq(x).
(3.22)

Hence
RAB(t) = − 1

T

∫
A(x)etLL(Bpeq)(x)dx = − 1

T
ĊAB(t). (3.23)

3.1.4 Applications
If the system under study is a particle moving in a d-dimensional space, with coordinates Xα, we can
take A = Xα and B = Xβ . In this case, the correlation is

Cαβ(t) = ⟨Xα(t)Xβ(0)⟩ (3.24)

and the force conjugated to B is a physical uniform force in the direction β, Fβ , so that the response is

Rαβ(t) =
δ⟨Xα(t)⟩
δFβ(0)

. (3.25)

The fluctuation-dissipation theorem states that

δ⟨Xα(t)⟩
δFβ(0)

= − 1

T
∂t⟨Xα(t)Xβ(0)⟩. (3.26)

3.1.5 Reversibility
At equilibrium, the correlations functions are even in time:

CAB(t) = ⟨A(t)B(0)⟩ = CAB(−t) = ⟨A(0)B(t)⟩, (3.27)

a property which is called reversibility.
We prove this relation within the master equation framework. Equation (3.8) gives, for t > 0,

CAB(t) =
∑
i,j

Ai

(
etM

)
ij
Bjp

eq
j = AT etMPB, (3.28)

where we have defined the diagonal matrix P ,

Pij = δijp
eq
j . (3.29)

Conversely,
CAB(−t) = BT etMPA. (3.30)

We now need to use detailed balance, Mijp
eq
j = Mjip

eq
i , which reads in matrix notation MP = PMT

or
MT = P−1MP. (3.31)

Exponentiating, we find
etM

T

= P−1etMP. (3.32)

Taking the transpose of Eq. (3.30), we thus find

CAB(−t) = ATPetM
T

B = ATPP−1etMPB = AT etMPB = CAB(t). (3.33)
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3.2 Introduction to stochastic thermodynamics
In this section, we introduce stochastic thermodynamics, which aims at defining the thermodynamic
quantities, such as energy, entropy, heat, and work at the single trajectory scale, and to study the
statistical properties of these quantities. This presentation mainly follows Ref. [13].

3.2.1 Work and heat for an overdamped Langevin equation
The simplest system that can be used to introduce the basic quantities of stochastic thermodynamics is
the one-dimensional overdamped Langevin equation (Eq. (2.57)), which we write

ẋ(t) = µF (x(t), λ(t)) + ξ(t), (3.34)

where µ is the mobility, the inverse of the friction coefficient, λ(t) a control parameter and ξ(t) is the
Gaussian white noise with correlation

⟨ξ(t)ξ(t′)⟩ = 2Dδ(t− t′) (3.35)

with D = µT . We can split the force F as

F (x, λ) = −∂xV (x, λ) + f(x, λ), (3.36)

where f represents a nonconservative drive, which may be present even in a one-dimensional system if it
is defined on a circle.

Stochastic thermodynamics gives a thermodynamic interpretation of the Langevin equation by asso-
ciating to it the quantities entering the first law of thermodynamics, namely the energy, the heat, and
the work. The first law of thermodynamics reads

dE = δw + δq, (3.37)

where dE is the energy variation, δw is the work received by the system and δq is the heat received by
the system from its environment. The small quantities are written with d if they are variations of well
defined quantities, and with δ otherwise. The convention on the sign of the work and the heat may differ
from one book or article to the other.

The energy variation can be written as

dE = ∂xV dx+ ∂λV dλ. (3.38)

The work received by the system has two contributions: one comes from the variation of the control
parameter λ(t), the other from the non-conservative force:

δw = ∂λV dλ+ fdx. (3.39)

Combining Eqs. (3.37, 3.38, 3.39), we obtain the heat received by the system

δq = (∂xV − f)dx = −Fdx. (3.40)

This means that the work of the total force, Fdx, is fully dissipated, which is to be expected in an
overdamped system.

3.2.2 Entropy and second law
In order to discuss the second law of thermodynamics, we need to define the entropy at the level of a
single trajectory.

From the definition of the entropy of a distribution (Eq. (1.43) in the discrete case, Eq. (2.64) in the
continuous case), it is “natural” to attribute the entropy

s = − ln p(x) (3.41)

to a location x. Together with the position x, this quantity involves the distribution p(x, t), which is the
solution of the Smoluchovski equation (Eq. (2.58)):

∂tp = −∂xj = −µ∂x(Fp− T∂xp). (3.42)
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We now compute the temporal evolution of the entropy:

ṡ = −∂tp(x, t)

p(x, t)
− ∂xp(x, t)

p(x, t)
ẋ (3.43)

= −∂tp(x, t)

p(x, t)
+

j(x, t)

Dp(x, t)
ẋ− 1

T
F (x, t)ẋ (3.44)

= −∂tp(x, t)

p(x, t)
+

j(x, t)

Dp(x, t)
ẋ+

q̇

T
, (3.45)

where we have recognized q̇ = δq/dt. By analogy with thermodynamics, we identify q̇/T as the variation
of the entropy of the medium, or thermostat,

ṡm = − q̇

T
. (3.46)

The variation of the total entropy, stot = s+ sm, is given by

ṡtot = −∂tp(x, t)

p(x, t)
+

j(x, t)

Dp(x, t)
ẋ. (3.47)

We now want to average this quantity with the probability p(x, t). It is straightforward for the first
term: 〈

∂tp(x, t)

p(x, t)

〉
=

∫
∂tp(x, t)

p(x, t)
p(x, t)dx =

∫
∂tp(x, t)dx = 0, (3.48)

because of probability conservation. For the second term, we need to compute an average of the form
⟨g(x)ẋ⟩; this is not trivial and we need to take a step back. We note that, actually, this calculation is
required to compute the average received heat, ⟨q̇⟩ = −⟨F (x)ẋ⟩.

The difficulty lies in the fact that the definition of the quantity g(x)ẋ requires to choose a convention,
typically Ito or Stratonovitch. In stochastic thermodynamics, the symmetric Stratonovitch convention is
preferred, and is the one implicitly chosen for the heat. With this convention, the discretization of g(x)ẋ
over a small time interval dt and displacement dx, is

g(x)ẋ =
g(x) + g(x+ dx)

2

[
µF (x) +

dξ

dt

]
(3.49)

=

[
g(x) +

dx

2
∂xg(x) +O(dx2)

] [
µF (x) +

dξ

dt

]
(3.50)

= g(x)µF (x) +
dxdξ

2dt
∂xg(x) + g(x)

dξ

dt
+

dx

2
∂xg(x)µF (x) +O(dx2). (3.51)

We now want to average this quantity. The first term is straightforward and gives ⟨g(x)µF (x)⟩. For
the second term, we average separately over the position and the noise realization; the latter gives
⟨dxdξ⟩ = ⟨dξ2⟩ = 2Ddt. The remaining terms do not contribute at leading order in dt. We thus have

⟨g(x)ẋ⟩ = ⟨g(x)µF (x)⟩+D⟨∂xg(x)⟩ (3.52)

=

∫
p(x) [g(x)µF (x) +D∂xg(x)] dx (3.53)

=

∫
g(x) [µF (x)p(x)−D∂xp(x)] dx (3.54)

=

∫
g(x)j(x)dx (3.55)

=

〈
g(x)

j(x)

p(x)

〉
. (3.56)

We can finally evaluate the average total entropy variation:

Ṡtot = ⟨ṡtot⟩ =
〈

j(x)2

Dp(x)2

〉
≥ 0. (3.57)

This inequality corresponds to the second law of thermodynamics: it shows that the entropy, which may
decay along a particular trajectory, increases on average.

The first and second law of stochastic thermodynamics can be verified, for instance, in a Brownian
Carnot Engine [14, 15].
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3.2.3 Fluctuation theorems
Probabilities of the path and the reversed path

After having defined and derived the first and second law of stochastic thermodynamics, we now consider
the fluctuation of the trajectories and related quantities. At the root of this analysis is the probability to
observe a given trajectory x(t), given an initial state x0 and a driving λ(t), which is given by (Sec. 2.4):

p[x(t)|x0] = N exp(−A[x(t), λ(t)]), (3.58)

where the action reads, with the the Stratonovitch convention,

A[x(t), λ(t)] =

∫ tf

0

(
[ẋ(t)− µF (x(t), λ(t))]

2

4D
+

µ

2
∂xF (x(t), λ(t))

)
dt, (3.59)

and N is a normalization constant that does not depend on x0 and λ(t).
It is interesting to compare the probability to observe a path x(t) to the probability to observe the

reversed path x†(t) = x(tf − t) when the driving is also reversed, λ†(t) = λ(tf − t). We denote p† the
probability to observe a path with the driving λ†; it is given by the action A†. From the expression of
the action, we have, for initial states x0 and x†

0,

p[x(t)|x0]

p†[x†(t)|x†
0]

= exp
(
A†[x†(t)]−A[x(t)]

)
(3.60)

= exp

(
1

T

∫ tf

0

ẋ(t)F (x(t), λ(t))dt

)
(3.61)

= exp(∆sm), (3.62)

where ∆sm =
∫ tf
0
ṡm(t)dt and we have used the fact that ẋF = −q̇ = T ṡm. Only the cross terms ẋF do

not cancel because ẋ†(t) = −ẋ(tf − t).
Introducing initial distributions p(x0) and p†(x†

0), we have

p[x(t)]

p†[x†(t)]
=

p[x(t)|x0]

p†[x†(t)|x†
0]

p(x0)

p†(x†
0)

= exp(∆sm)
p(x0)

p†(x†
0)
. (3.63)

We will use different choices for the distributions p(x0) and p†(x†
0).

If the distribution p†(x) is the solution of the Smoluchowski equation at time tf with the initial
condition p(x) at time t = 0, then these probabilities are related to the initial and final entropies,
p(x0) = exp(−s(0)) and p†(x†

0) = exp(−s(tf)) (Eq. (3.41)). As a consequence,

p[x(t)]

p†[x†(t)]
= exp(∆sm − s(0) + s(tf)) = exp(∆stot). (3.64)

Another interesting choice is to take for these distributions the equilibrium distributions at times 0
and tf, that is, for the values of the control parameter λ0 and λ(tf) = λf . These equilibrium probabilities
are given by

peq(x, λ) = exp

(
F(λ)− V (x, λ)

T

)
, (3.65)

where we have introduced the free energy

F(λ) = −T ln

(∫
exp

(
−V (x, λ)

T

)
dx

)
. (3.66)

In this case, we have

p[x(t)]

p†[x†(t)]
= exp

(
∆sm +

F(λ0)−F(λf)− V (x0, λ0) + V (x†
0, λf)

T

)
(3.67)

= exp

(
∆E − q −∆F

T

)
(3.68)

= exp

(
w −∆F

T

)
. (3.69)

The quantity w − ∆F may be referred to as the dissipated work: this is the work that does not affect
the free energy of the system.
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Jarzynski equality

In order to obtain useful expressions, we now want to compute averages over the paths. To do so, we
rearrange Eq. (3.63) and introduce an arbitrary function g[x(t)]:

g[x(t)]p[x(t)] exp(−∆sm)
p†(x†

0)

p(x0)
= g[x(t)]p†[x†(t)]. (3.70)

Now integrating over the paths, we obtain〈
g[x(t)] exp(−∆sm)

p†(x†
0)

p(x0)

〉
=
〈
g[x†(t)]

〉†
, (3.71)

where ⟨·⟩† represents an average for the reverse process.
Taking the equilibrium distributions at the beginning and the end of the process and g = 1, we obtain〈

exp

(
∆F − w

T

)〉
= 1. (3.72)

This relation is the Jarzynski equality; it is often written as〈
exp

(
−w

T

)〉
= exp

(
−∆F

T

)
. (3.73)

The Jarzynski equality allows to obtain the free energy difference between two states by driving many
times the system from one to the other and measuring the work. The protocol should start at equilibrium;
however, there is no need to wait for equilibrium at the end of the process since the part of the trajectory
where the control parameter λ is constant does not contribute to the work. It has been derived in 1997
and been in 2002 to measure the folding energy of RNA hairpins [16].

Crooks fluctuation relation

The Jarzynski equality provides the average of a function of the work, but it does not say much about
the distribution of the work. Instead of integrating Eq. (3.70) over all the paths, we can select the paths
corresponding to a work w̄ by using g[x(t)] = δ(w[x(t)]− w̄). We obtain

δ(w[x(t)]− w̄)p[x(t)] exp(−∆sm)
p†(x†

0)

p(x0)
= δ(w[x(t)]− w̄)p†[x†(t)], (3.74)

Integrating over all the paths, with the initial and final configurations at equilibrium, we find

p(w̄) exp

(
∆F − w̄

T

)
= p†(−w̄). (3.75)

The right hand side is not obvious to obtain, the detailed derivation is∫
[dx(t)]δ(w[x(t)]− w̄)p†[x†(t)] =

∫
[dx†(t)]δ(w[x(t)]− w̄)p†[x†(t)], (3.76)

=

∫
[dx(t)]δ(w[x†(t)]− w̄)p†[x(t)], (3.77)

=

∫
[dx(t)]δ(−w[x(t)]− w̄)p†[x(t)], (3.78)

= p†(−w̄). (3.79)

We have used (i) the fact that the Jacobian of the variable change from [dx(t)] to [dx†(t)] is 1. (ii)
A renaming of the variables x(t) ↔ x†(t). (iii) The fact that the work of the reverse trajectory is the
opposite of the work of the forward trajectory, w[x†(t)] = −w[x(t)]. Renaming w̄ → w, we have

p(w)

p†(−w)
= exp

(
w −∆F

T

)
, (3.80)

which is the Crooks fluctuation theorem.
Integrating the Crooks theorem written in the form (3.75) allows to recover the Jarzynski equality.
The Crooks theorem allows to determine free energy differences even more reliably than the Jarzinski

equality (JE). Using the same protocol as the for the JE and computing the distributions of the forward
and reverse works, the Crooks theorem tells that the free energy difference is given by the work where
the distributions cross. It has been used to determine RNA folding energies [17].
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Entropy production

The same applies for the total entropy production, which is also antisymmetric: ∆stot[x
†(t)] =

−∆stot[x(t)]. Following the same steps, we obtain

p(∆stot)

p†(−∆stot)
= e∆stot . (3.81)

In a NESS, the forward and reverse processes are identical and

p(∆stot)

p(−∆stot)
= e∆stot . (3.82)

3.2.4 Discrete processes

We have introduced the basic concepts of stochastic thermodynamics for a simple and intuitive system,
a one-dimensional and overdamped continuous process; actually, this is the framework within which
stochastic thermodynamics has been developped. In order to be applicable beyond this system, it needs
to be generalized to more general systems, ideally to a discrete process, which we now address.

Heat, entropy, and second law

The system is defined by the master equation ṗ = Mp, where the coefficients of M are the transition
rates kyx to jump from a state x to a state y. We assume that the transition rates satisfy the detailed
balance for a temperature T and an energy landscape Vx(λ). If the system is in contact with several
reservoirs or if a driving is applied, the transition rates associated to the different reservoirs and drivings
can be added.

A trajectory x(t) involves jumps from xi to yi at times ti. For the transition i, we assume that the
energy change corresponds to the heat received from the reservoir,

qi = Vyi
(ti)− Vxi

(ti). (3.83)

Using detailed balance, this quantity can be written from the transition rates,

qi = −T ln

(
kyixi

(ti)

kxiyi
(ti)

)
. (3.84)

The associated entropy increase in the medium ∆sm,i is, as before,

∆sm,i = −qi
T

= ln

(
kyixi

(ti)

kxiyi(ti)

)
. (3.85)

The entropy change in the medium per unit time is thus given by

ṡm(t) =
∑
i

δ(t− ti) ln

(
kyixi(ti)

kxiyi
(ti)

)
. (3.86)

We define the entropy of the system in the state x and with a distribution p(x) as for a continuous
system (Eq. (3.41)):

s = − ln p(x). (3.87)

Its evolution is

ṡ(t) = −∂tpx(t)

px(t)
+
∑
i

δ(t− ti) ln

(
pxi(ti)

pyi
(ti)

)
. (3.88)

Summing this quantity with Eq. (3.86), we obtain the total entropy variation,

ṡtot(t) = −∂tpx(t)

px(t)
+
∑
i

δ(t− ti) ln

(
kyixi(ti)pxi(ti)

kxiyi
(ti)pyi

(ti)

)
. (3.89)

Based on the continuous case, we may expect this quantity to be positive on average.
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To average the total entropy variation, we need to compute averages of terms involving transitions,
such as ⟨

∑
i δ(t− ti)dxiyi

⟩, where dxy is an arbitrary function over the pairs of states. This average is
given by 〈∑

i

δ(t− ti)dyixi

〉
=
∑
x,y

dyxkyxpx(t). (3.90)

We thus get

Ṡtot = ⟨ṡtot⟩ =
∑
x,y

kyxpx(t) ln

(
kyx(t)px(t)

kxy(t)py(t)

)
(3.91)

=
∑
⟨x,y⟩

[kyxpx(t)− kxypy(t)] ln

(
kyx(t)px(t)

kxy(t)py(t)

)
(3.92)

≥ 0. (3.93)

The inequality comes from the fact that the term in the sum is of the form (a − b)[f(a) − f(b)] with
a = kyxpx(t), b = kxypy(t) and f(u) = ln(u), and this combination is positive if f is increasing.

Assuming that the expression (3.85) for entropy increase in the medium can be used even when
detailed balance does not hold, Eq. (3.92) gives the mean entropy production in a NESS.

Action and fluctuation theorems

We now turn to the fluctuation theorems. To extend them to the discrete case, we need the probability
to observe a trajectory x(t). As for the discrete case, we consider time intervals of small duration ∆t and
write the probability to observe the sequence x1, . . . , xN , starting from x0:

p(x1, . . . , xN |x0) =
∏
n

p(xn+1|xn) =
∏
n

(
δxn+1xn +∆tkxn+1xn

)
. (3.94)

In the intervals [ti, ti+1] between two jumps, the process remains at yi = xi+1 and the term in brackets
is 1− rxi+1∆t, where rx denotes the exit rate from a state x, rx = −kxx =

∑
y kxy. Taking the product

over the small time intervals gives a contribution exp(−[ti+1 − ti]rxi+1
). Whenever a small time interval

contains a jump, the term in brackets is ∆t kyixi
. Finally, the probability to observe the trajectory is

p[x(t)|x0] = exp

(
−
∫

rx(t)dt

)∏
i

∆t kyixi
. (3.95)

It may seem strange to have a dependence on ∆t; it may be understood as follows. Imagine that we want
to sum over the trajectories that start at x0 and end at x1 after a single jump. In the discretized version,
this involves a sum over the small interval where the jump occurs; this sum being multiplied by ∆t, it
becomes an integral in the limit ∆t → 0. The associated probability is

p[x(t) = (x0, x1)] =

∫ tf

0

exp (−trx0
− (tf − t)rx1

) kx1x0
dt. (3.96)

Similarly, if there are nj jumps, the duration ∆t will enter as ∆tnj , which corresponds to the nj integrals
over the transition times. Having this signification of the sum over the trajectories in mind, we omit the
∆t factor and write the probability of a trajectory as

p[x(t)|x0] = exp(−A[x(t)]), (3.97)

where we have introduced the action

A[x(t)] =

∫
rx(t)dt−

∑
i

ln(kyixi
). (3.98)

As for the continuous case, we can define the reverse trajectory x†(t). When considering the reverse
trajectory, we also assume that the eventual time dependence of the rates has been reversed. The ratio
of the probabilities to observe the trajectory x(t) for the forward process and the trajectory x†(t) for the
reverse process is

p[x(t)|x0]

p†[x†(t)|x†
0]

= exp
(
A†[x†(t)]−A[x(t)]

)
= exp

(∑
i

ln

(
kyixi

kxiyi

))
= exp(∆sm), (3.99)
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which is the same result as for the continous case.
To translate the results of Sec. 3.2.3, we need to define the work. This is easily done by coming back

to the first law of thermodynamics, ∆E = Vxf(tf)−Vx0
(t0) = w+q. The energy change along a trajectory

can be split in the energy change during the transitions, which is attributed to the heat received from
the reservoir, and the energy change between the transitions, which is attributed to the work exerted to
change the energy of the states:

∆E =
∑
i

([Vyi(ti)− Vxi(ti)] + [Vxi(ti)− Vxi(ti−1)]) =
∑
i

qi +

∫
V̇x(t)(t)dt = q + w, (3.100)

where V̇x(t) denotes the derivative of the energy of the state x with respect to time. With this definition,
all the results of the previous section apply.

3.2.5 Thermodynamic uncertainty relations
Instead of presenting in detail the thermodynamic uncertainty relations, we will restric ourselves to a
simple example, the biased random walk, and briefly discuss the general result and how it is obtained.

Cost of precision of a biased random walk

We consider a random walk with jump rates k− and k+, the ratio of which provides the dimensionless
energy gain, or affinity, A of moving to the right: A = ln(k+/k−). A particle starting from x = 0 at time
t = 0 moves on average due to the bias while its distribution spreads. We are interested in the average
and the variance of its position at time t, ⟨x(t)⟩ and ⟨[x(t)− ⟨x(t)⟩]2⟩.

The position of the particle after a time t is given by x(t) = n+(t) − n−(t), where n±(t) are the
number of jumps to the left and to the right. These number are Poisson processes:

p(nν(t) = n) =
(kνt)

n

n!
e−kνt, (3.101)

for ν ∈ {−,+}. As a consequence, their mean and variance are ⟨nν(t)⟩ = kνt, ⟨[nν(t)− ⟨nν(t)⟩]2⟩ = kνt.
We can thus obtain the mean and variance of x(t), the later being the sum of the variances of the
independent variables n−(t) and n+(t):

⟨x(t)⟩ = (k+ − k−)t, (3.102)

⟨[x(t)− ⟨x(t)⟩]2⟩ = (k+ + k−)t. (3.103)

The relative uncertainty on the final position is

ϵ2 =
⟨[x(t)− ⟨x(t)⟩]2⟩

⟨x(t)⟩2
=

2(k+ + k−)

(k+ − k−)2t
. (3.104)

As expected, the uncertainty decreases with time.
It is now interesting to compare the uncertainty with the entropy generated during the process.

Ṡtot = ⟨ṡtot⟩ =
∑
⟨x,y⟩

[kyxpx(t)− kxypy(t)] ln

(
kyx(t)px(t)

kxy(t)py(t)

)
(3.105)

=
∑
x

[k+px(t)− k−px+1(t)] ln

(
k+px(t)

k−px+1(t)

)
(3.106)

=
∑
x

[k+px(t)− k−px+1(t)] ln

(
k+
k−

)
+
∑
x

[k+px(t)− k−px+1(t)] ln

(
px(t)

px+1(t)

)
(3.107)

= (k+ − k−) ln

(
k+
k−

)
−
∑
x

px(t)

[
k+ ln

(
px+1(t)

px(t)

)
+ k− ln

(
px−1(t)

px(t)

)]
(3.108)

≥ (k+ − k−) ln

(
k+
k−

)
, (3.109)

where the last inequality has been obtained from ln(u) ≤ u−1. The remaining contribution is the entropy
creation rate due to the irreversibility of the process. The contribution that we have bounded comes from
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the spreading of the distribution; considering a random walk on a circle, this contribution is zero if the
distribution is uniform.

After a time t, the entropy increase is thus ∆Stot = tṠtot and

ϵ2∆Stot ≥
k+ + k−
k+ − k−

ln

(
k+
k−

)
= A coth

(
A

2

)
≥ 2. (3.110)

This is a thermodynamic uncertainty relation, which states that precision comes with an entropic cost.
The bound is saturated for A = 0, that is, at equilibrium.

General current fluctuations and bounds

This relation can be generalized to any current [18] (Secs. 6 and 7). For two states x, y, we define the
empirical current ĵyx as the number of times the system jumps from x to y minus the number of times the
system jumps from y to x, divided by the time. A generalized current j is the linear combination of the
currents associated to a transition. The relative uncertainty of such current is still ϵ2 = ⟨(ĵ−⟨ĵ⟩)2⟩/⟨ĵ⟩2.

The first step to obtain a general thermodynamic uncertainty relation is to use the probability of
individual paths to obtain the probability of the currents. The second step is to bound the fluctuations
and to compare this bound to the entropy creation.
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Chapter 4

Fluctuating fields

4.1 Interfaces

4.1.1 Edwards-Wilkinson equation

The Edwards-Wilkinson equation (EW) is one of the simplest stochastic equations for a field. We consider
an interface that has a height h(r, t) at position r and time t. We assume that this interface evolves
diffusively, with a diffusion coefficient ν. The interface is also moved by a noise term with variance 2D
that we assume to be uncorrelated in both space and time. The EW equation reads

∂h

∂t
(r, t) = ν∇2h(r, t) + η(r, t), (4.1)

with η(r, t) a Gaussian white noise of average ⟨η(r, t)⟩ = 0 and covariance

⟨η(r, t)η(r′, t′)⟩ = 2Dδ(r− r′)δ(t− t′). (4.2)

In the following, we consider a flat initial interface h(r, 0) = 0. The EW equation is a diffusion equation
with a forcing term η(r, t). Its general solution is

h(r, t) =

∫ t

0

dt′
∫

dr′η(r′, t′)G(r− r′, t− t′), (4.3)

where G(r, t) is the Green function of the diffusion equation, that is to say the solution of(
∂

∂t
− ν∇2

)
G(r, t) = δ(r)δ(t). (4.4)

Eq. (4.1) is a linear equation with Gaussian noise: its solution is also a Gaussian process. The statistics
of h(r, t) is entirely characterized by its average value and its covariance. From Eq. (4.3), we immediately
obtain

⟨h(r, t)⟩ = 0. (4.5)

From the invariance by translation, the covariance is ⟨h(R, t)h(R+r, t+τ)⟩ ≡ C(r, t, τ)1. Using Eq. (4.2)
and reorganizing the integrals, we obtain

C(r, t, τ) = 2D

∫ t

0

dt′
∫

dr′G(r′, t′)G(r′ + r, t′ + τ). (4.6)

The Green function of the diffusion equation in dimension d, solution of Eq. (4.4), is the Gaussian
kernel

G(r, t) =
1

(4πνt)d/2
Θ(t)e−

r2

4νt (4.7)

where Θ(t) is the Heaviside function (1 when t ≥ 0, 0 otherwise).

1For completeness, one should also consider ⟨h(R, t+ τ)h(R+ r, t)⟩.
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Let us focus on the correlations at equal time (τ = 0):

C(r, t, 0) = 2D

∫ t

0

dt′
1

(4πνt′)d

∫
dr′e−

1
4νt′ [r

′2+(r′+r)2] (4.8)

= 2D

∫ t

0

dt′
1

(8πνt′)d/2
e−

r2

8νt′ . (4.9)

In dimension d = 1, the integral converges for r = 0. We obtain the following expression for the variance
of the height,

⟨h(r, t)2⟩ = C(0, t, 0) = D

√
2t

πν
∼ t2β . (4.10)

β = 1/4 is called the growth exponent.
In dimensions 2 and 3, the covariance C(r, t, 0) diverges when r → 0. The usual way around this

problem is to introduce a microscopic cutoff distance a. This cutoff is intepreted either a lattice step of
a microscopic model for which the EW equation is the continuous limit; or as a correlation distance for
the noise η(r, t). The effective variance in dimensions 2 and 3 is [19]

⟨h(r, t)h(r+ aêx, t)⟩ =

{
D
4πν ln νt

a2 in d = 2
D

4πνa in d = 3
. (4.11)

In dimension 2 the divergence is logarithmic in time, while in dimension 3 the diffusion stabilizes the
interface at a constant variance.

Periodic line

It is instructive to study the EW equation on a 1D line of length L with periodic boundary conditions.
The computations are a bit tedious and we will not reproduce them in detail. The interested reader will
check that the Green function of the problem is

G(r, t) =
1

L

∞∑
n=−∞

eiknr−νk2
nt, (4.12)

with kn = 2πn/L. It is the Jacobi theta function, up to scaling factors.
We are interested in the average width W (t) of the interface, defined as

W 2(t) =

〈
1

L

∫ L

0

dr[h(r, t)− h̄(t)]2

〉
(4.13)

where h̄(t) is the spatial average of h at time t,

h̄(t) =
1

L

∫ L

0

dr h(r, t). (4.14)

One shows that W obeys a so-called Family-Vicsek scaling,

W = Lαf

(
t

Lz

)
. (4.15)

The roughness exponent is α = 1/2 and the dynamic exponent is z = 2. The function f has the following
limit behaviors2,

f(u) ∼
u→0

uβ f(u) ∼
u→∞

u0. (4.16)

We recover the growth exponent β = α/z = 1/4, it governs the short-time behavior t ≪ L2. At large
time, the width is set (in terms of the length) by the roughness exponent.

2The explicit expression of f is f(u) =

[
4D

∞∑
n=1

1− e−8π2n2u

8π2n2

]1/2

. It is related to theta functions.
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4.1.2 Kardar-Parisi-Zhang equation
For some realistic systems, the up-down symmetry (h 7→ −h) is broken. It happens for instance if the
interfaces grows by deposition. A large class of these systems are well described by the Kardar-Parisi-
Zhang equation (KPZ),

∂h

∂t
(r, t) = ν∇2h(r, t) +

λ

2
(∇h)2 + η(r, t), (4.17)

with η(r, t) having the same properties as in the previous part (see Eq. (4.2)). The additional term favors
the growth (increase of h) in the zone where the interface is not flat (when λ > 0). Due to its non-linear
nature, the KPZ equation is much more difficult to study. It has given rise to a large number of works
(and review) even in the 1D case d = 1.

It can be shown that the KPZ equation obeys a Family-Vicsek scaling [20], Eqs. (4.15)-(4.16), with
exponents

α =
1

2
, z =

3

2
, β =

1

3
. (4.18)

The growth exponent β = 1/3 is characteristic of the KPZ universality class.
Finally, let us consider the KPZ equation (4.17) on the infinite line (L → ∞) with fixed parameters

(say ν = 1/2, D = 1/2, λ = 2 without loss of generality [20]) and call h∞(x, t) its solution. The expo-
nents (4.18) suggest a growth h ∼ tβ with a spatial extent ℓ ∼ t1/z. This suggests to define the random
field

h(r) = lim
t→∞

t−βh∞(t1/zr, t). (4.19)

This limit is known as the KPZ fixed point in infinite volume. If we start from a flat interface (h∞(r, t =
0) = 0), the one-point probability distribution of h = h(r) (independent of r) is given by the celebrated
Tracy-Widom distribution pTW (h) which is highly asymmetric:

pTW (h) ∼

{
e−

1
24 |h|

3

h → −∞
e−

2
3 |h|

3/2

h → ∞
. (4.20)

Note that the Tracy-Widom distribution also corresponds to the distribution of the largest eigenvalue
of a random matrix distributed according to the Gaussian orthogonal ensemble (in the large size limit).
The Gaussian orthogonal ensemble GOE(n) is an ensemble of n × n symmetric random matrices with
Gaussian weights. Such a matrix can be generated as H = (G + GT )/

√
2n with G a n × n matrix of

iid random number from a standard normal distribution. But we often prefer to define the probability
measure on symmetric matrices P (H) ∝ exp(−n

4Tr(H
2)). See Ref. [21] for more details on random

matrices.

4.2 Fluctuating fields at equilibrium

4.2.1 Energy functional
In this section, we consider a scalar field ϕ(x, t) ∈ R with x ∈ Rd. Physically, it may represent a density
field, magnetization field, concentration field, etc. Most of the framework can be extended to a vector
field ϕ ∈ Rk, or to a complex field.

An important distinction is to be made between conserved fields - for instance a density field - which
satisfy

∫
dxϕ(x, t) = const, and non conserved fields - such as a magnetization field - for which there is

no such constraint.
At equilibrium, we have a energy H[ϕ] (or free energy depending of the case3). The equilibrium

probability of observing a given configuration is Peq[ϕ] ∝ e−
1
T H[ϕ]. Let us give some basic examples. We

provide the expression of the functional derivative δH
δϕ(x) that will be useful for the dynamics.

• Gaussian field with correlation length ξ.

H[ϕ] =

∫
dx

[
1

2
(∇ϕ(x))2 +

1

2ξ2
ϕ(x)2

]
(4.21)

δH

δϕ(x)
= −∇2ϕ(x) + ξ−2ϕ(x) (4.22)

3For simplicity we keep the notation H[ϕ] independently of the fact that it is an energy or a free energy.
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• Ginzburg-Landau Hamiltonian. This is used to decribed the (non-conserved) magnetization of the
Ising model in a mean-field approximation. t is the distance to the critical temperature and h the
magnetic field.

H[ϕ] =

∫
dx

[
t

2
ϕ(x)2 +

u

4
ϕ(x)4 +

1

2
(∇ϕ)2 − hϕ(x)

]
(4.23)

δH

δϕ(x)
= tϕ(x) + uϕ(x)3 −∇2ϕ(x)− h (4.24)

• Cahn-Hilliard free energy. This is used to describe the phase separation for a (conserved) density
field. The two stable phases are ϕ(x) = ±1.

H[ϕ] =

∫
dx

[
1

4
(ϕ(x)2 − 1)2 +

γ

2
(∇ϕ)2

]
(4.25)

δH

δϕ(x)
= ϕ(x)3 − ϕ(x)− γ∇2ϕ(x) (4.26)

This is of course very similar to the Ginzburg-Landau Hamiltonian, but is used in a different context.

As for a particle, the equilibrium energy does not provide the dynamics. It is perfectly admissible to
describe this dynamics with a deterministic (partial differential) equation for the average value. But we
sometimes prefer to use a stochastic description.

4.2.2 Stochastic partial differential equation
We consider a stochastic (partial) differential equation of the form,

∂tϕ(x, t) = Ax[ϕ(t)] +

∫
dyBxyη(y, t) (4.27)

where η is a spatiotemporal Gaussian noise of vanishing average η(x, t) = 0 which is delta-correlated in
both space and time,

⟨η(x, t)η(x′, t′)⟩ = δ(x− x′)δ(t− t′). (4.28)
For simplicity, we assume that the noise is additive: Bxy is independent of ϕ.

The Fokker-Planck equation associated with Eq. (4.27) is

∂tP [ϕ] = −
∫

dx
δ

δϕ(x)
(Ax[ϕ]P [ϕ]) +

1

2

∫
dxdyΓxy

δ2P [ϕ]

δϕ(x)δϕ(y)
(4.29)

with Γxy =
∫
dzBxzByz.

We now return to our problem of prescribing the dynamics of an equilibrium model. We follow the
Hohenberg & Halperin classification [22] (models A and B).

4.2.3 Relaxational dynamics (Model A)
The simplest dynamics given a Hamiltonian H[ϕ] is to relax following the “gradient”:

∂tϕ(x, t) = −µ
δH[ϕ]

δϕ(x)
+ ξ(x, t), (4.30)

where µ is a mobility parameter and the noise ξ has a covariance

⟨ξ(x, t)ξ(x′, t′)⟩ = 2µTδ(x− x′)δ(t− t′). (4.31)

It is important to note that we prescribed the strength of the noise to be 2µT to satisfy the fluctuation-
dissipation relation and obtain the equilibrium probability in a few lines.

Eq. (4.30) corresponds to Eq. (4.27) with Ax[ϕ] = −µ δH[ϕ]
δϕ(x) and Bxy =

√
2µTδ(x − y). The Fokker-

Planck equation (4.29) is

∂tP [ϕ] = µ

∫
dx

δ

δϕ(x)

{
δH[ϕ]

δϕ(x)
P [ϕ] + T

δP [ϕ]

δϕ(x)

}
(4.32)

As expected, the equilibrium probability law P [ϕ] ∝ e−
1
T H[ϕ] is a stationary solution of the Fokker-Planck

equation.
For concreteness, the model A equation associated with the Ginzburg-Landau Hamiltonian (4.23) is

∂tϕ(x, t) = µ
[
−tϕ(x)− uϕ3(x) +∇2ϕ(x) + h

]
+
√
2µTη(x, t). (4.33)
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4.2.4 Relaxational dynamics for a conserved field (Model B)

The model A does not conserve the total integral of the field. For a conserved field, the equation needs
to be a conservation equation of the form ∂tϕ +∇ · J = 0, where J is the flux. A possible choice is the
so-called model B. For simplicity, we write it in dimension 1,

∂tϕ(x, t) = −∂x

{
−µ∂x

δH[ϕ]

δϕ(x)
+ ξ(x, t)

}
, (4.34)

⟨ξ(x, t)ξ(x′, t′)⟩ = 2µTδ(x− x′)δ(t− t′). (4.35)

Once again, we chose to satisfy the fluctuation-dissipation relation between the mobility and the noise
strength.

One checks (using integration by parts) that Eq. (4.34) corresponds to Eq. (4.27) with Ax[ϕ] =

µ∂xx
δH[ϕ]
δϕ(x) and Bxy =

√
2µT∂yδ(x− y). The Fokker-Planck equation (4.29) is

∂tP [ϕ] = −µ

∫
dx

δ

δϕ(x)

(
∂xx

δH[ϕ]

δϕ(x)
P [ϕ]

)
− µT

∫
dxdy[∂yyδ(x− y)]

δ2P [ϕ]

δϕ(x)δϕ(y)
(4.36)

= −µ

∫
dx∂x

δ

δϕ(x)

[
∂x

δH[ϕ]

δϕ(x)
P [ϕ] + T∂x

δP [ϕ]

δϕ(x)

]
. (4.37)

We integrated by parts the second term, and used the fact that derivatives with respect to x and ϕ(x)

commute. As in model A, the equilibrium probability law P [ϕ] ∝ e−
1
T H[ϕ] is a stationary solution of the

Fokker-Planck equation.
As an example, let us write the stochastic version of the Cahn-Hilliard equation in arbitrary dimension,

for the free-energy given by Eq. (4.25):

∂tϕ(x) = µ∇2 · [ϕ(x)3 − ϕ(x)− γ∇2ϕ(x)] + ζ(x, t), (4.38)

where ζ is a conserved noise of covariance ⟨ζ(x, t)ζ(x′, t′)⟩ = 2µTδ(t − t′)∇x · ∇x′δ(x − x′). We often
prefer to write ζ as the divergence of a vectorial noise ξ,

ζ(x, t) = ∇ · [
√

2µTξ(x, t)] (4.39)
⟨ξα(x, t)ξβ(x′, t′)⟩ = δαβδ(x− x′)δ(t− t′), (4.40)

where α, β denote spatial components.

4.3 Out-of-equilibrium stochastic fields

We now give a few examples of out-of-equilibrium stochastic field theory that have been proposed recently
for different systems. They are all based on an equilibrium theory, but incorporate additional terms that
violate fluctuation-dissipation relations and allow for net current in the stationary states.

Active models B and B+. The phase separation of a passive fluid is often described with the Cahn-
Hilliard Hamiltonian, Eq. (4.25),

H[ϕ] =

∫
dx

[
1

4
(ϕ(x)2 − 1)2 +

γ

2
(∇ϕ)2

]
. (4.41)

But phase separations may also occur in an out-of-equilibrium context. For instance self-propeled active
Brownian particles experience a phase separation at high density and high activity. This separation
between a dense (liquid-like) phase and a dilute (gaz-like) phase is known as motility induced phase
separation, see Ref. [5] and Fig. 2.4c. To describe such a phenomenon with a field theory, additional
terms are required. One model that was proposed [23] is the active model B+:

∂tϕ(r) = −∇ · J(r) (4.42)

with the current
J(r) = −µ∇ δH

δϕ(r)
− λ∇[(∇ϕ)2] + ζ(∇2ϕ)∇ϕ+

√
2µTξ(r). (4.43)
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The two additional terms λ and ζ allowed by symmetry cannot be written as the (functional) derivative
of a Hamiltonian. They make the model intrisincally out-of-equilibrium.

To confirm the out-of-equilibrium character of the model, we can look at the entropy production in
the system. We focus on the case ζ = 0, called active model B. The total entropy production associated
with a trajectory {ϕ(r, t)}tft=0 is, see Eq. (3.64),

∆stot[{ϕ(r, t)}
tf
t=0] = ln

P [{ϕ(r, t)}tft=0]

P [{ϕ†(r, t)}tft=0]
, (4.44)

with P the probability of a trajectory and ϕ†(r, t) = ϕ(r, tf −t) the time-reversed trajectory. The average
entropy production rate of the system is defined as

Ṡtot = lim
tf→∞

1

tf

〈
∆stot[{ϕ(r, t)}

tf
t=0]

〉
. (4.45)

where the brackets denote an average over the evolution of the system. It can be shown [24] that in the
active model B,

∆stot[{ϕ(r, t)}
tf
t=0] = −∆H

T
− λ

T

∫ tf

0

dt

∫
dr[∇ϕ(r, t)]2ϕ̇(r, t), (4.46)

with ∆H = H[ϕ(t = tf )] − H[ϕ(t = 0)] the energy difference between the initial and the final times.
This term would be the only one for an equilibrium system. On the other hand, the second term is a
purely out-of-equilibrium effect. At large time, the free-energy saturates while the non-equilibrium term
becomes proportional to time. One eventually shows that the entropy production rate is given by

Ṡtot = − λ

T

∫
dr
〈
[∇ϕ(r)]2ϕ̇(r)

〉
ss

(4.47)

where ⟨. . . ⟩ss denotes an average over the steady state of the system. It is worth noting that the spatial
regions that contribute to the integral are those where there is a gradient of ϕ that is to say the interfaces.
While the homogeneous parts of the system behave like an equilibrium system, the interfaces are strongly
out-of-equilibrium.

Driven electrolyte. Démery & Dean [25] modeled an electrolytic solution as coupled stochastic equa-
tions for two species: positive particles that are driven to the right by an electric field E = Eex, and
negative particles that are driven to the left. It is assumed that the perturbations around an homoge-
neous density ρ̄ are small. The perturbation to the density of positive particles is denoted ϕ+(x) and the
one of the negative particles is ϕ−(x). The derivation of the equations is based on a linearization of the
Dean-Kawasaki equation that we will describe below.

In the absence of electric field, the free energy of the system is

H[ϕ+, ϕ−] =
1

2

∫
dxdy

∑
α,β=±1

ϕα(x)Vαβ(x− y)ϕβ(y) +
T

2ρ̄

∫
dx
[
ϕ+(x)

2 + ϕ−(x)
2
]
. (4.48)

The first term accounts for the interaction between particles of species α and β with a potential Vαβ .
The second term is a linearized entropy.

In presence of an electric field, the coupled stochastic differential equations for ϕ± are:

∂tϕ+(x) = −∇ ·
[
−ρ̄∇ ∂H

∂ϕ+(x)
+Eϕ+(x) +

√
2ρ̄Tξ+(x)

]
, (4.49)

∂tϕ−(x) = −∇ ·
[
−ρ̄∇ ∂H

∂ϕ−(x)
−Eϕ−(x) +

√
2ρ̄Tξ−(x)

]
. (4.50)

The mean density ρ̄ plays the role of the mobility. ξ± are Gaussian white noises of uncorrelated compo-
nents and unit variance. The non-equilibrium effect of the electric field is visible in the additional fluxes
±Eϕ± that encode the fact that positive particles are driven to the right while negative particles are
driven to the left.

Such a Gaussian theory produces an analytical prediction for the conductivity (ratio of electric current
over electric field) of the electrolyte [25].
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Non-reciprocal Cahn-Hilliard equation. As a last example, we mention the case of two species,
with densities ϕ1(r) and ϕ2(r) that both undergo phase separations, but interact “non-reciprocally” [26].
By this, we mean that the effect of species 1 on species 2 is not the symmetric of the effect of species 2
on species 1. You may imagine foxes hunting rabbits and rabbits fleeing away from foxes. Starting with
a Cahn-Hilliard-like free energy,

H[ϕ1, ϕ2] =

∫
dr

{
2∑

i=1

[
1

4
(ϕi(r)

2 − 1)2 +
γ

2
(∇ϕi)

2

]
+ χϕ1(r)ϕ2(r) + χ′ϕ1(r)

2ϕ2(r)
2

}
, (4.51)

one incorporates the non-reciprocal effect with a coefficient α, leading to the coupled equations,

∂tϕ1(r) = ∇ ·
[
µ∇

{
∂H

∂ϕ1(r)
+ αϕ2(r)

}
+
√
2µTξ1(r)

]
, (4.52)

∂tϕ2(r) = ∇ ·
[
µ∇

{
∂H

∂ϕ2(x)
− αϕ1(r)

}
+
√
2µTξ2(r)

]
, (4.53)

with ξi being the usual Gaussian white noises. Such a non-equilibrium model exhibits both pattern
formation and traveling density waves [26].

4.4 From microscopics to field theories
Given a microscopic system of interacting particles, a legitimate question is whether we can build a
(fluctuating) field theory for the density field of the system. In general, this is a daunting challenge. But
we introduce here two problems in which this has been done explicitely. The details are rather technical,
and we will stick topresenting the main ideas.

4.4.1 The Dean-Kawasaki equation
We want to describe a system of N overdamped particles interacting via a pairwise potential V (r). The
coupled Langevin equations for the positions Ri of the particles are

∂tRi = −
N∑
i=1

∇iV (Ri(t)−Rj(t)) +
√
2Tηi(t), (4.54)

where ηi are Gaussian white noises of covariance ⟨ηi(t)ηj(t′)⟩ = δijδ(t − t′) (we dropped the mobility
cofficient for simplicity). We define the local fluctuating density ρ(r, t) as

ρ(r, t) =

N∑
i=1

δ(r−Ri(t)). (4.55)

Using a Ito calculus computation that we will not reproduce here, Dean showed [10] that ρ(r, t) obeys
the following stochastic differential equation:

∂tρ(r, t) = −∇ ·
[
−ρ(r, t)

∂H[ρ]

∂ρ(r)
+
√

2Tρ(r, t)η(r, t)

]
, (4.56)

with the free energy

H[ρ] =
1

2

∫
drdr′ρ(r)V (r− r′)ρ(r′) + T

∫
drρ(r) log ρ(r). (4.57)

The first term is the interaction energy between the particles, the second term is the entropy of the
system. η(r, t) is a Gaussian white noise of covariance ⟨ηα(r, t)ηβ(r′, t′)⟩ = δαβδ(r − r′)δ(t − t′). In
Eq. (4.56), Ito convention is assumed.

Eq. (4.56) is known as the Dean-Kawasaki equation [27]. It is an exact equation for ρ given by
Eq. (4.55). But it is hard to handle because (i) it is non linear in ρ, and (ii) the noise is multiplicative.

The analog of the Dean-Kawasaki equation for the probability P [ρ] of observing a given density field
is the Kawasaki equation [27],

∂tP [ρ] = −
∫

dr
δ

δρ(r)
∇ ·
[
ρ(r)∇

(
δH

δρ(r)
P [ρ] + T

δP

δρ(r)

)]
. (4.58)
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1/2 1/21/2 1/2 1/21/2 1/2 1/2

Figure 4.1: In the symmetric exclusion process (SEP), particles are on a discrete line. During a short
time interval ∆t,a given particle has a probability 1

2∆t to jump to the right, and the same probability to
jumpy to the left. Hard-core exclusion is enforced meaning that a particle cannot jump if its arrival site
is occupied. We can define ηi(t) ∈ {0, 1} the occupation of site i at time t (1 means occupied, 0 empty).
At large distance L, the system evolves on a diffusive timescale τ ∼ L2. We may write ηi(t) ≃ ρ

(
i
L ,

t
L2

)
with L ≫ 1. ρ is the fluctuating field that we want to describe.

The equilibrium probability P [ρ] ∝ exp
(
− 1

T H[ρ]
)

is solution of the Kawasaki equation (4.58).
One big advantage of the Dean-Kawasaki equation (4.56) is that it can be easily extended to out-of-

equilibrium situations such as driven or active systems. Progress have been made in several directions,
in particular by linearizing the equation around an homogeneous density profile. See Refs. [27, 28, 25]
for more details.

4.4.2 Fluctuating hydrodynamics of a lattice model

Starting from a microscopic model, such as the symmetric exclusion principle (SEP, Fig. 4.1), it is
tempting to wonder whether there is a continuous limit at large length scales and large times. That is to
say if we can describe the system with a “hydrodynamic” equation for a continuous density field ρ(x, t).

Indeed, a diffusive 1D lattice model can be described at large scale by two quantities D(ρ) and
σ(ρ) [29]. D(ρ) is linked to the average flux in the system when there is a small inbalance of density
between the left and the right, while σ(ρ) is linked to the variance of the flux for a uniform density.
In the general case, D(ρ) and σ(ρ) are linked by a fluctuation-dissipation relation: σ(ρ) = 2T

f ′′(ρ)D(ρ)

where f(ρ) is the microscopic free-energy. In the case of the SEP, D(ρ) = 1/2, σ(ρ) = ρ(1 − ρ) and
f(ρ) = T [ρ log ρ+ (1− ρ) log(1− ρ)].

Given these definitions, the dynamics of the lattice model at large time, on diffusive length scales is
assumed to be given by the following fluctuating hydrodynamics equation:

∂tρ(x, t) = ∂x

[
D(ρ(x, t))∂xρ(x, t) +

√
σ(ρ(x, t))η(x, t)

]
, (4.59)

with ⟨η(x, t)η(x′, t′)⟩ = δ(x− x′)δ(t− t′). The Ito convention is assumed.
On can go further by writing the path integral description of Eq. (4.59). This approach is known as

macroscopic fluctuation theory [30]. Things become technical quickly, and we only sketch the main steps.
We consider the probability P (ρ(x, 0) → ρ(x, T )) of having a density profile ρ(x, T ) at time T knowing
that we started from the initial density profile ρ(x, 0). We write this probability as a path integral over
the evolution of the density ρ and the flux j:

P (ρ(x, 0) → ρ(x, T )) ∝
∫

DjDρP ({j(x, t), ρ(x, t)}). (4.60)

The probability P ({j(x, t), ρ(x, t)}) of a given path is

P ({j(x, t), ρ(x, t)}) ∝ e−I(j,ρ)I (∂tρ(x, t) + ∂xj(x, t)) (4.61)

where I is a delta function enforcing the relationship between the density and the flux, and I(j, ρ) is the
action and reads

I(j, ρ) =

∫
dx

∫ T

0

dt
[j(x, t) +D(ρ(x, t))∂xρ(x, t)]

2

2σ(ρ(x, t))
. (4.62)

One checks that this is analogous to the path integral approach to the usual Langevin equation.
The delta function may be represented with an auxilliary field H(x, t):

I (∂tρ(x, t) + ∂xj(x, t)) =

∫
DHe−

∫
dx

∫ T
0

dtH(x,t)[(∂tρ(x,t)+∂xj(x,t)], (4.63)
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where it is customary to drop the imaginary number i from the exponential. And after performing a
Gaussian integration over the field j, one eventually obtains

P (ρ(x, 0) → ρ(x, T )) ∝
∫

DρDH exp

[
−
∫

dx

∫ T

0

dt

{
H∂tρ+D(ρ)∂xρ∂xH − σ(ρ)

2
(∂xH)2

}]
. (4.64)

At large times, one wants to approximate the integral by the minimum of the action and perform a
saddle point approximation. The optimal path (ρ∗, H∗) (denote (q, p) in the litterature. . . ) satisfies the
following coupled differential equations,

∂tρ
∗ = ∂x[D(ρ∗)∂xρ

∗]− ∂x[σ(ρ
∗)∂xH

∗], (4.65)

∂tH
∗ = −D(ρ∗)∂2

xH
∗ − 1

2
(∂xρ

∗)2. (4.66)

One notes that in general these equations are non-linear. Furthermore, the devil is in the details, and in
this case in the boundary conditions associated with the latest equations. They render any computation
very technical.

One recent success of MFT is the computation of the full probability law X(t) of a tagged particle in
the SEP from the macroscopic equations [31].
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